


## Test description for dry-type transformers chapter for special tests







| 1.   | SCOPE 5                       |                                                                              |      |  |  |  |  |
|------|-------------------------------|------------------------------------------------------------------------------|------|--|--|--|--|
| 2.   | STANDARDS 6                   |                                                                              |      |  |  |  |  |
| 3.   | LIGHTNIN                      | G IMPULSE TEST                                                               | 7    |  |  |  |  |
| 4.   | SOUND LE                      |                                                                              | 8    |  |  |  |  |
| 4.   | 1. Standari                   |                                                                              | 8    |  |  |  |  |
|      | 2. AIM                        |                                                                              | 8    |  |  |  |  |
| 4.   | 3. THEORETI                   | CAL PRINCIPAL                                                                | 9    |  |  |  |  |
| 4.   | 4. MEASURE                    | MENT                                                                         | 10   |  |  |  |  |
|      | 4.4.1.                        | Measurement chamber                                                          | . 10 |  |  |  |  |
|      | 4.4.2.                        | Tapping position for measurement                                             | . 10 |  |  |  |  |
|      | 4.4.3.                        | Equivalent circuit diagram for a transformer in no-load                      | . 10 |  |  |  |  |
|      | 4.4.4.                        | Test setup for supplying                                                     | . 11 |  |  |  |  |
|      | 4.4.5.                        | Test setup for measuring                                                     | . 11 |  |  |  |  |
|      | 4.4.6.                        | Commonly used measuring devices for measurement                              | . 12 |  |  |  |  |
|      | 4.4.7.                        | Recorded values for the measurement                                          | . 12 |  |  |  |  |
| 4.   | 5. CALCULAT                   | IONS TO DETERMINE SOUND LEVEL VALUES                                         | 13   |  |  |  |  |
| 4.   | 6. TEST CRIT                  | eria / Maximum values                                                        | 13   |  |  |  |  |
| 5.   | MEASURE                       | MENT OF EXCITATION                                                           | 14   |  |  |  |  |
| 5.   | 1. Standari                   |                                                                              | 14   |  |  |  |  |
| 5.   | 2. AIM                        |                                                                              | 14   |  |  |  |  |
| 5.   | 3. MEASURE                    | MENT                                                                         | 14   |  |  |  |  |
|      | 5.3.1.                        | Tapping position for measurement                                             | . 15 |  |  |  |  |
|      | 5.3.2.                        | Equivalent circuit diagram for a transformer in no-load                      |      |  |  |  |  |
|      | 5.3.3.                        | Test setup                                                                   |      |  |  |  |  |
|      | 5.3.4.                        | Commonly used measuring devices for measurement                              |      |  |  |  |  |
|      | 5.3.5.                        | Recorded values for the measurement                                          |      |  |  |  |  |
| 5.   | 4. TEST CRIT                  | eria / Maximum values                                                        | 16   |  |  |  |  |
| 6.   | DETERMI                       | NATION OF THE CAPACITY OF THE WINDINGS AGAINST EARTH AND BETWEEN THE WINDING | GS   |  |  |  |  |
| AS V | VELL AS LO                    | SS FACTORS (TAN Δ)                                                           | 17   |  |  |  |  |
| 6.   | 1. Standari                   |                                                                              | 17   |  |  |  |  |
| 6.   | 2. AIM                        |                                                                              | 17   |  |  |  |  |
| 6.   | 3. MEASURE                    |                                                                              | 17   |  |  |  |  |
|      | 6.3.1.                        | Preparing the transformer for the measurement                                |      |  |  |  |  |
|      | 6.3.2.                        | Test voltage                                                                 | . 18 |  |  |  |  |
|      | 6.3.3.                        | Test frequency                                                               | . 18 |  |  |  |  |
|      | 6.3.4.                        | Climate conditions                                                           |      |  |  |  |  |
|      | 6.3.5.                        | Test circuits                                                                |      |  |  |  |  |
|      | 6.3.6.                        | Commonly used measuring devices for measurement                              | . 20 |  |  |  |  |
|      | 6.3.7.                        | Recorded values for the measurement                                          | . 20 |  |  |  |  |
| 6.   | 4. TEST CRIT                  | eria / Maximum values                                                        | 20   |  |  |  |  |
| 7.   | INSULATIO                     | ON RESISTANCE                                                                | 21   |  |  |  |  |
| 7.   | 1. Standari                   |                                                                              | 21   |  |  |  |  |
| 7.   | 7.2. Аім 21                   |                                                                              |      |  |  |  |  |
| 7.   | 7.3. THEORETICAL PRINCIPAL 21 |                                                                              |      |  |  |  |  |
| 7.   | 7.4. MEASUREMENT 23           |                                                                              |      |  |  |  |  |



|     | 7.4.1.               | Test voltage                                                       | 23        |
|-----|----------------------|--------------------------------------------------------------------|-----------|
|     | 7.4.2.               | Test setup                                                         | 23        |
|     | 7.4.3.               | Commonly used measuring devices for measurement                    |           |
|     | 7.4.4.               | Recorded values for the measurement                                |           |
| -   | 7.5. TEST CR         | ITERIA / MAXIMUM VALUES                                            | 24        |
| 8.  | SWEEP F              | REQUENCY RESPONSE ANALYSIS (SFRA)                                  | 25        |
| 8   | 8.1. Standa          | RD                                                                 | 25        |
| 8   | 8.2. Aim             |                                                                    | 25        |
| 8   | 8.3. MEASUF          | REMENT                                                             | 26        |
|     | 8.3.1.               | Testing voltage and frequency                                      |           |
|     | 8.3.2.               | Excerpt from the standard IEC 60076-16                             |           |
|     | 8.3.3.               | Measurement between phase 1 and phase 2                            | 27        |
|     | 8.3.4.               | Measurement between phase 2 and phase 3                            |           |
|     | 8.3.5.               | Measurement between phase 3 and phase 1                            | 28        |
|     | 8.3.6.               | Commonly used measuring devices for measurement                    | 28        |
|     | 8.3.7.               | Recorded values for the measurement                                | 28        |
| 8   | <b>3.4.</b> TEST CRI | ITERIA / MAXIMUM VALUES                                            | 28        |
| 9.  | MEASUF               | REMENT OF ZERO SEQUENCE IMPEDANCE                                  | 29        |
| 9   | 9.1. Standa          | RD                                                                 | 29        |
| 9   | 9.2. Аім             |                                                                    | 29        |
| 9   | 9.3. Measur          |                                                                    | 29        |
|     | 9.3.1.               | Testing current and frequency                                      |           |
|     | 9.3.2.               | Test setup                                                         |           |
|     | 9.3.3.               | Commonly used measuring devices for measurement                    |           |
|     | 9.3.4.               | Recorded values for the measurement                                |           |
| Ģ   | 9.4. TEST CR         | ITERIA / MAXIMUM VALUES                                            | 30        |
| 10. |                      | SUREMENT OF HARMONICS OF THE NO-LOAD CURRENT IN % OF FUNDAMENTAL C | OMPONENTS |
|     | 31                   |                                                                    |           |
| -   | 10.1. Stand          | ARD                                                                | 31        |
| -   | 10.2. Aim            |                                                                    | 31        |
| -   | 10.3. MEASU          |                                                                    | 31        |
|     | 10.3.1.              | Tapping position for measurement                                   |           |
|     | 10.3.1.              | Equivalent circuit diagram for a transformer in no-load            |           |
|     | 10.3.2.              | Test setup                                                         |           |
|     | 10.3.3.              | Commonly used measuring devices for measurement                    |           |
|     | 10.3.4.              | Recorded values for the measurement                                |           |
| -   | 10.4. Test C         | RITERIA / MAXIMUM VALUES                                           | 32        |
| 11. | MEAS                 | SUREMENT OF PARTIAL DISCHARGE WITH EARTH                           | 33        |
|     | 11.1. Stand          | ARD                                                                | 33        |
|     | 11.2. Аім            |                                                                    | 33        |
| -   | 11.3. MEASU          |                                                                    | 33        |
|     | 11.3.1.              | Differences to the routine partical discarge measurement           |           |
|     | 11.3.2.              | Commonly used measuring devices for measurement                    |           |
|     | 11.3.3.              | Recorded values for the measurement                                |           |
| -   |                      | RITERIA / MAXIMUM VALUES                                           | 33        |
| 12. | APPE                 | NDIX                                                               | 34        |



| 12.1. EXAMPLE TEST CERTIFICATE SOUND LEVEL MEASUREMENT                                                     | 34 |
|------------------------------------------------------------------------------------------------------------|----|
| 12.2. EXAMPLE TEST CERTIFICATE MEASUREMENT OF EXCITATION                                                   | 35 |
| 12.3. EXAMPLE TEST CERTIFICATE DETERMINATION OF THE CAPACITY OF THE WINDINGS AGAINST EARTH AND BETWEEN THE |    |
| WINDINGS AS WELL AS LOSS FACTORS (TAN $\Delta$ )                                                           | 37 |
| 12.4. EXAMPLE TEST CERTIFICATE INSULATION RESISTANCE                                                       | 38 |
| 12.5. EXAMPLE TEST CERTIFICATE SFRA                                                                        | 39 |
| 12.6. EXAMPLE TEST CERTIFICATE ZERO SEQUENCE IMPEDANCE                                                     | 40 |
| 12.7. Example test certificate Measurement of harmonics of the no-load current in % of fundamental         |    |
| COMPONENTS                                                                                                 | 41 |
| 12.8. EXAMPLE TEST CERTIFICATE MEASUREMENT OF PARTIAL DISCHARGE WITH EARTH                                 | 42 |
| 12.9. EXAMPLE CALIBRATION LIST                                                                             | 43 |
| 12.10. Test lab layout                                                                                     | 44 |
| 12.11. LIST OF PICTURES, FORMULAS, TABLES AND SOURCES                                                      | 45 |



## Issued by: Starkstrom-Gerätebau GmbH Test lab cast resin transformers Christopher Kammermeier GTTP Document No.: 02.04.80-11.006 Rev J on 20.12.2022

### 1. Scope

This is a general test description for dry-type transformers at SGB and will apply if no specific customer requirements are given for the individual tests.

Special customer standards or values are not included in this description.

If not indicated, the description is exemplary for a three-phase transformer with two winding systems. Auxiliary parts of the transformer are also not included, except as indicated e.g., temperature sensors.

The scope of this chapter describes "special" tests, this means the standard does not require these tests (see IEC 60076-1:2011 chapter 3.11.3).

They are carried out only upon customer request (if applicable).



## 2. Standards

Part 11: Dry-type transformers IEC 60076-11:2018

Replacement for DIN EN 60726 (VDE 0532-726):2003-10

| with reference to: |                                                                          |
|--------------------|--------------------------------------------------------------------------|
| IEC 60076-1:2011   | Power transformers - General                                             |
| IEC 60076-3:2013   | Insulation levels, dielectric tests and external clearances in air       |
| IEC 60076-10:2016  | Determination of sound levels                                            |
| IEC 60076-16:2011  | Transformers for wind turbine application                                |
| IEC 60076-18:2012  | Measurement of frequency response                                        |
|                    |                                                                          |
| IEC 60060-1:2010   | High voltage test techniques – General definitions and test requirements |
|                    |                                                                          |



## 3. Lightning impulse test

The lightning impulse voltage test with chopped waves or neutral impulse test is described in the "Test description for dry-type-transformers for type tests".



## 4. Sound level measurement

#### 4.1. Standard

IEC 60076-11:2018 clause 14.4.2 // part 10

#### 4.2. Aim

Determination of the guaranteed sound level values e.g.:

L<sub>P(A)</sub> sound pressure level (A-weighted)

 $L_P$  = ten times the logarithm to the base 10 of the ratio of the square of the r.m.s. sound pressure to the square of the reference sound pressure ( $p0 = 20 * 10^{-6} Pa$ ).

$$Lp = 10 * \log \frac{p^2}{p0^2}$$

formula 1: calculation of Lp

#### L<sub>W(A)</sub> sound power level (A-weighted)

L<sub>W</sub> = ten times the logarithm to the base 10 of the ratio of a given r.m.s. sound power to the reference sound power ( $w0 = 1 * 10^{-12} W$ ).

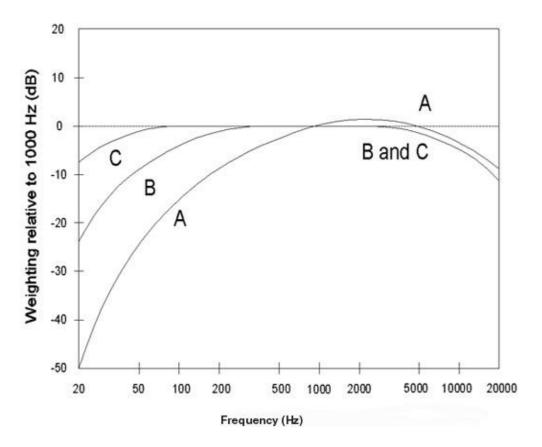
 $Lw = 10 * \log \frac{W}{W_0}$ 

formula 2: calculation of Lw



#### 4.3. Theoretical principal

Basically, a measurement at no-load and load is possible.


Due to the sizes of our transformers, the noise level measurement in loaded operation is not performed as it has no significant influence.

Usually we perform this measurement as:

#### Measurement of A-weighted sound level by sound pressure method at no load (based on IEC 60076-10:2016)

This means:

- > We only measure a sound pressure
- > A sound power will be calculated using the measured sound pressure
- > We measure in an A-weighted sound spectrum (see picture below)
- > We only measure in no-load (excitation) condition
- It's based on standard because we do not use correction factors for the recorded values (the measurement result would be lower).



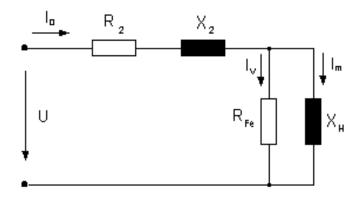
picture 1: sound level meter response characteristics for the A, B, and C weighting



#### 4.4. Measurement

The measurement of the sound level is made using the same test setup as for the no-load measurement (chapter for routine tests, clause (6)). It is carried out with the rated voltage  $U_R$  and the rated frequency  $f_R$ . The measurement voltage is applied as close to  $U_R$  as possible.

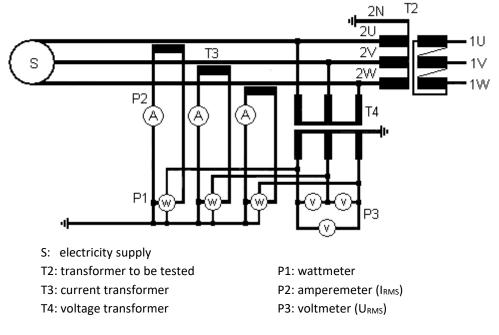
The transformer will always be measured at IPO0 AN, if applicable also in AF and with the FAN's alone. Sound level measurement in an enclosure (e.g. IP21) is a special test and must be ordered separately.


#### 4.4.1.Measurement chamber

The measurement is carried out in a soundproofed chamber (-31 dB(A)).

#### 4.4.2. Tapping position for measurement

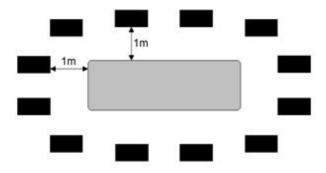
It is only necessary to reach the rated turn voltage. Therefore, the tapping position does not matter. Usually it is the principal tapping position.


#### 4.4.3.Equivalent circuit diagram for a transformer in no-load



picture 2: transformer in no-load




#### 4.4.4.Test setup for supplying



picture 3: test setup for measurement of sound level

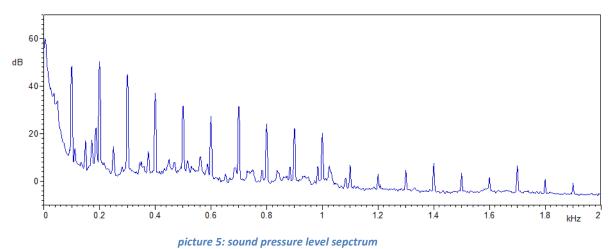
#### 4.4.5.Test setup for measuring

Surrounding the transformer, there are 12 microphones at a distance of one meter from the transformer and located at the middle height of the coils.



picture 4: microphones surrounding the transformer




| measuring                      | manufacturer         | type                                                         | range / accuracy                                          | frequency      | class     |
|--------------------------------|----------------------|--------------------------------------------------------------|-----------------------------------------------------------|----------------|-----------|
| devices                        |                      |                                                              |                                                           |                |           |
| Precision<br>Power<br>Analyzer | ZIMMER               | LMG 500                                                      | U rms 1000 V / I rms 32 A<br>U pk 3200 V / I pk 120 A     | DC - 10<br>MHz | 0.01-0.03 |
| LV-current-<br>transf.         | H&B                  | Ti 48                                                        | 2.5-500 A/5 A                                             | 50/60 Hz       | 0.1       |
| HV-voltage-<br>transf.         | epro                 | NVRD 40                                                      | 2-40 kV/100 V                                             | 50/60 Hz       | 0.02      |
| HV-current-<br>transf.         | epro                 | NCO 60                                                       | 1-600 A/5 A                                               | 50/60 Hz       | 0.01      |
| 12<br>microphones              | G.R.A.S              | 1/2" freefild<br>microphone 46AE<br>CCP-preamplifier<br>26CA | 3.15 Hz - 20 kHz -> ± 2.0 dB<br>5 Hz - 10 kHz -> ± 1.0 dB | n.a.           | n.a.      |
| 12<br>datalogging<br>modules   | Heim Systems<br>GmbH | DATaRec 4                                                    | Bandwidth max. 20 kHz<br><0.2 °<br>±0.1 % or ±1 mV        | n.a.           | n.a.      |

#### 4.4.6.Commonly used measuring devices for measurement

table 1: Commonly used measuring devices

#### 4.4.7.Recorded values for the measurement

For each of the 12 microphones the A-weighted sound pressure level  $L_{P(A)}$  and a sound spectrum from 0-2 kHz is given (see picture below).





If AF and FAN sound is applicable than we will note the A-weighted sound pressure level  $L_{P(A)}$  for this also.



#### 4.5. Calculations to determine sound level values

The first step is that the average A-weighted sound pressure level  $L_{P(A)}$  will be calculated.

$$L_{P(A)}[average \ uncorrected] = 10 \ \log\left[\frac{1}{N}\sum_{i=1}^{N} 10^{0,1L_{P(A)}i}\right]$$

formula 3: calculation of the average A-weighted sound pressure level  $L_{P(A)}$ 

N = number of microphones

 $L_{P(A)} i$  = A-weighted sound pressure level L<sub>P(A)</sub> of microphone no. i

If the measured distance or the guaranteed distance is not 1m, then the A-weighted sound pressure level shall be  $L_{P(A)}$  corrected according the formula from IEC 60076-10:2016.

 $L_{P(A)at\ rated\ distance} = L_{P(A)at\ measured\ distance} - 10\ \log \frac{S_{at\ rated\ distance}}{S_{at\ measured\ distance}}$ 

formula 4: correction for distance

S = measurement surface

Finally, the calculation of the sound power level  $L_{W\left(A\right)}$ 

$$L_{W(A)} = L_{P(A)} + 10 \log \frac{S}{S_0}$$

formula 5: calculation of the sound power level LW(A)

S=measurement surfaceS\_0=is equal to the reference area (1 m²)

#### 4.6. Test criteria / Maximum values

The guarantee sound level values must be held.



## 5. Measurement of excitation

#### 5.1. Standard

None

#### 5.2. Aim

Determination of the point of core saturation

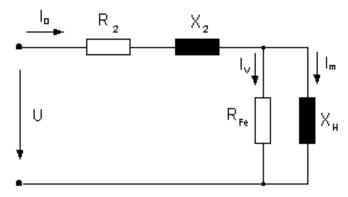
#### 5.3. Measurement

The measurement of the excitation is made using the same test setup as for the no-load measurement (chapter for routine tests, clause 6). It is carried out with rated frequency  $f_R$  and multiple voltages (see below).

percent of rated voltage

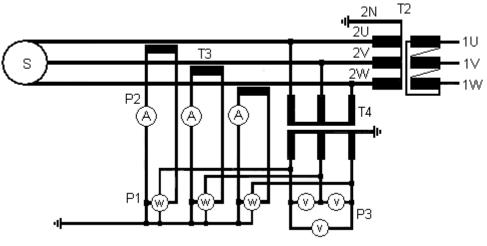
|      |   | •                                            |
|------|---|----------------------------------------------|
| 10%  |   |                                              |
| 20%  |   |                                              |
| 30%  |   |                                              |
| 40%  |   |                                              |
| 50%  |   |                                              |
| 60%  |   |                                              |
| 70%  |   |                                              |
| 75%  |   |                                              |
| 80%  |   |                                              |
| 83%  |   |                                              |
| 85%  |   |                                              |
| 88%  |   |                                              |
| 90%  |   |                                              |
| 93%  |   |                                              |
| 95%  |   |                                              |
| 98%  |   |                                              |
| 100% |   |                                              |
| 103% |   |                                              |
| 105% |   |                                              |
| 108% |   |                                              |
| 110% |   |                                              |
| 113% |   |                                              |
| 115% |   |                                              |
| 118% |   |                                              |
| 120% | 1 |                                              |
| 123% |   | (if applicable, due to high core saturation) |
| 125% |   |                                              |
| 130% |   |                                              |
|      |   |                                              |

table 2: usual voltages for excitation curve




#### 5.3.1. Tapping position for measurement

It is only necessary to reach the rated turn voltage.


Therefore, the tapping position does not matter. Usually it is the principal tapping position.

#### 5.3.2. Equivalent circuit diagram for a transformer in no-load



picture 6: transformer in no-load





picture 7: test setup for measurement of excitation

- S: electricity supplyT2: transformer to be testedT3: current transformerT4: voltage transformer
- P1: wattmeter P2: amperemeter (I<sub>RMS</sub>) P3: voltmeter (U<sub>RMS</sub>)



#### 5.3.4.Commonly used measuring devices for measurement

| measuring devices           | manufacturer | type    | range / accuracy                                      | frequency   | class     |
|-----------------------------|--------------|---------|-------------------------------------------------------|-------------|-----------|
| Precision Power<br>Analyzer | ZIMMER       | LMG 500 | U rms 1000 V / I rms 32 A<br>U pk 3200 V / I pk 120 A | DC - 10 MHz | 0.01-0.03 |
| LV-current-transf.          | H&B          | Ti 48   | 2.5-500 A/5 A                                         | 50/60 Hz    | 0.1       |
| HV-voltage-transf.          | epro         | NVRD 40 | 2-40 kV/100 V                                         | 50/60 Hz    | 0.02      |
| HV-current-transf.          | epro         | NCO 60  | 1-600 A/5 A                                           | 50/60 Hz    | 0.01      |

table 3: Commonly used measuring devices

#### 5.3.5.Recorded values for the measurement

Voltage [V], amperage [A] and losses [W] for all phases (in R.M.S.) are recorded. The Magnetic flux density [T] is indicated based on the individual test voltages.

#### 5.4. Test criteria / Maximum values

none



# 6. Determination of the capacity of the windings against earth and between the windings as well as loss factors (tan $\delta$ )

#### 6.1. Standard

IEC 60076-1:2011 clause 11.1.2.2 a

#### 6.2. Aim

The purpose of the measurement is to determine the value of the capacity of the windings against earth and between the windings as well as loss factors (tan  $\delta$ ).

This value can be compared with the measured value after x years or between the factory and installation site.

A difference between the values can occur e.g.: due to changing of the coil position, humidity on the transformers or aging of the insolating material.

Note: Any change in the climatic conditions will change the measured readings.

#### 6.3. Measurement

The determination of capacity windings-to-earth and between windings shall be made according to IEC 60076-1:2011 (chapter 11.1.2.2 a) as a routine test for transformers with an Um > 72.5 kV.

For transformers with Um <72.5 kV, the test will only be done at the explicit request of the customer.

The measurement of dissipation factor (tan  $\delta$ ) of the insulation system capacitance is described as special test according IEC 60076-1:2011 (chapter 11.1.4 c & d).

In the current IEC standard, there is nothing mentioned about this measurement except for its existence. In the last version of the standard (IEC 60076-1:2000), the following comment was made (see picture below).

60076-1 © IEC:1993+A1:1999 - 61 -

#### 10.1.3 Special tests

- a) Dielectric special tests (IEC 60076-3).
- b) Determination of capacitances windings-to-earth, and between windings.
- c) Determination of transient voltage transfer characteristics.
- d) Measurement of zero-sequence impedance(s) on three-phase transformers (10.7).
- e) Short-circuit withstand test (IEC 60076-5).
- f) Determination of sound levels (IEC 60551).
- g) Measurement of the harmonics of the no-load current (10.6).
- h) Measurement of the power taken by the fan and oil pump motors.
- i) Measurement of insulation resistance to earth of the windings, and/or measurement of dissipation factor (tan  $\delta$ ) of the insulation system capacitances. (These are reference values for comparison with later measurement in the field. No limitations for the values are given here.)

If test methods are not prescribed in this standard, or if tests other than those listed above are specified in the contract, such test methods are subject to agreement.

picture 8: excerpt from the standard



#### 6.3.1. Preparing the transformer for the measurement

- > For the measurement, all windings have to be shorted.
- The mean earth terminal of the transformer has to be connected with the earth of the measurement device (e.g. frame of CPC 100 + CP TD1).
- ➢ For three-winding transformers with two LV windings, the two LV terminals should be connected together. The connection setup shall be used from a two-winding transformer.
- > If at all possible, the measurement shall be made in the enclosure.

#### 6.3.2.Test voltage

The test voltage should not exceed 80 % of the value of the separate-source AC withstand voltage test for the connected winding.

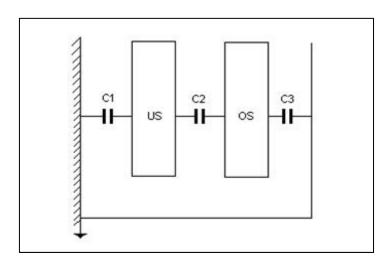
#### 6.3.3.Test frequency

The test frequency should be the rated transformer frequency.

#### 6.3.4.Climate conditions

The climate conditions shall be noted as accurately as possible

- Temperaturein °CHumidityin %
- Air-pressure in hPa




#### 6.3.5.Test circuits

#### 6.3.5.1. For two-winding transformers

| no.: | circ.: | High voltage connection | red lead (A) | blue lead (B) |
|------|--------|-------------------------|--------------|---------------|
| C3   | GSTg-A | HV (OS)                 | LV (US)      | n.c.          |
| C2   | UST-A  | HV (OS)                 | LV (US)      | n.c.          |
| C1   | GSTg-A | LV (US)                 | HV (OS)      | n.c.          |

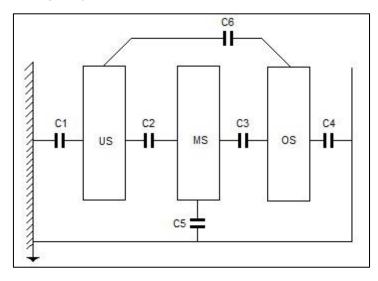
table 4: circuits for two-winding transformers



#### picture 9: test setup for capacity measurement at two-winding transformers

For transformers with a shield winding between HV and LV an extra measurement must be made, this is necessary because the measurement between the windings isn't possible. The circuit designated C2 will determine the value of the HV to the shield. The extra circuit C2 is for the value LV to shield.

| no.:     | circ.: | High voltage connection | red lead (A) | blue lead (B) |
|----------|--------|-------------------------|--------------|---------------|
| C2 extra | UST-A  | LV (US)                 | HV (OS)      | n.c.          |


table 5: additional circuits for two-winding transformers



| no.: | circ.:   | High voltage connection | red lead (A) | blue lead (B) |
|------|----------|-------------------------|--------------|---------------|
| C3   | UST-A    | HV (OS)                 | MV (MS)      | LV (US)       |
| C4   | GSTg-A+B | HV (OS)                 | MV (MS)      | LV (US)       |
| C2   | UST-B    | MV (MS)                 | HV (OS)      | LV (US)       |
| C5   | GSTg-A+B | MV (MS)                 | HV (OS)      | LV (US)       |
| C1   | GSTg-A+B | LV (US)                 | HV (OS)      | MV (MS)       |
| C6   | UST-A    | LV (US)                 | HV (OS)      | MV (MS)       |

#### 6.3.5.2. For three-winding transformers

table 6: circuits for three-winding transformers



picture 10: test setup for capacity measurement at three-winding transformers

#### 6.3.6.Commonly used measuring devices for measurement

| measuring devices                 | manufacturer | type              | range / accuracy | frequency | class |
|-----------------------------------|--------------|-------------------|------------------|-----------|-------|
| universal measuring<br>instrument | Omicron      | CPC 100<br>CP TD1 |                  | 0-400 Hz  | n.a.  |
|                                   |              | CP SB1            |                  |           |       |

table 7: Commonly used measuring devices

#### 6.3.7.Recorded values for the measurement

The following measured values should be noted:

| Circuit       |       |                                                 |
|---------------|-------|-------------------------------------------------|
| Voltage in kV |       |                                                 |
| Currentsin mA |       |                                                 |
| Losses in W   |       | (not necessary)                                 |
| Tan delta     | in %  | (at reference from 10 kV or at testing voltage) |
| Capacity Cx   | in pF | (at reference from 10 kV or at testing voltage) |

#### 6.4. Test criteria / Maximum values

none



## 7. Insulation resistance

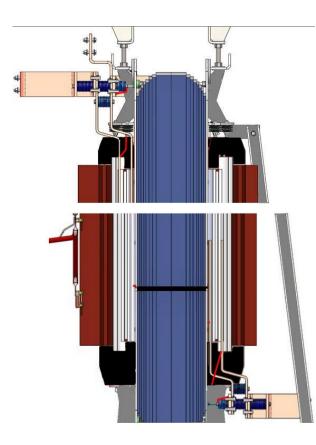
#### 7.1. Standard

None for dry-type-transformers

other but not applicable standards would be:

- IEC 60204-11:2018 Safety of machinery Electrical equipment of machines (rated voltage > test voltage < 5kV DC; insulation resistance value ≥ 1MΩ)</p>
- IEC 60364-6:2016 (DIN VDE 0100-600-06:2017) Low-voltage electrical installations (acc. protection class: test voltage 0.25-1kV DC; insulation resistance value ≥ 0.5-1MΩ)
- ▶ IEC 60076-1:2011 clause 11.1.2.2 (only for transformers ≥72.5kV) no notes to execution included

#### 7.2. Aim


The purpose of the measurement is to determine the value of the DC resistance of the windings against earth and between the windings.

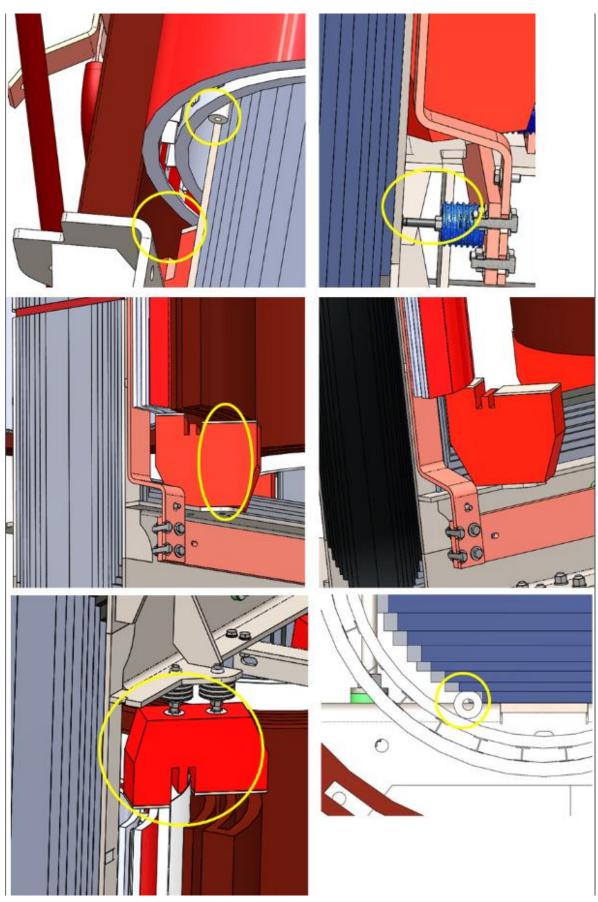
For liquid immersed transformers, the insulation value can be compared with the measured value after x years or between the factory and installation site.

#### 7.3. Theoretical principal

The insulation resistance is the ohmic resistance which results between two condutive parts with an insulation in-between e.g. winding to winding or winding to earth.

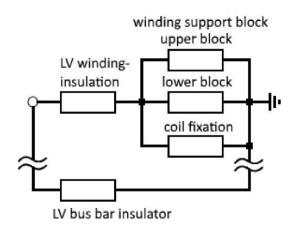
The current measured is caused by polarization of the insulating material (mainly on the surface of the insulation material).




picture 11: transformer active-part cross-section

Through the fact that the main insulation of a drytype-transformer is the air between windings or other conductive parts, only a few parts remain that have direct contact with the winding (e.g. coilsupport, insulators, ...).

Therfore the climatic conditions will have a significant influence on the value of the insulation resistance, e.g. by condensation on the surface of an insulator.


As can be seen in the picture below (picture 11: transformer active-part cross-section & picture 12: close up transformer active-part cross-section), the insulation consists of many different parts, which together result in a parallel connection of the induvidual insulation resistances in series (e.g. winding to support block to bolts of the support blocks, winding bus bar to insulator to the corepress-construction.





picture 12: close up transformer active-part cross-section





Therfore it could happen that e.g. the isolator of the LV busbar (if existing) creates a parallel circuit (picture 13: equivalent circuit diagram of the main insulation parts) with winding support and LV insulation. In this case the winding support and the winding insulation (with e.g. cast resin) could be irrelevant (depending on conditions).

picture 13: equivalent circuit diagram of the main insulation parts

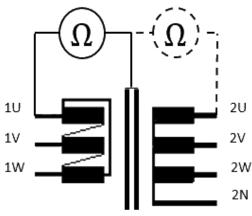
#### 7.4. Measurement

During the measurement of the insulation resistance as well as the capacitance measurement, ambient conditions (ambient temperature, air pressure and relative humidity) have a huge significance.

Consideration should be taken that no condensation has formed on/in the transformer.

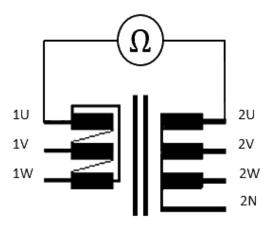
Note: Any change of climatic conditions, coil position or insulation aging will change the measured readings.

#### 7.4.1.Test voltage


For windings, the test voltage should be 2.5 kV DC, for insulated core bolts 500 V DC.

#### 7.4.2.Test setup

For this test, the windings shall be tested against earth as well as winding system against winding system (within the three-phase connection).


e.g. HV to LV // HV to ground // LV to ground

Also, the core bolts will be tested (if applicable).



picture 14: test setup for insulation resistance

e.g. bolts to ground





#### 7.4.3.Commonly used measuring devices for measurement

| measuring devices | manufacturer | type         | range / accuracy | frequency | class |
|-------------------|--------------|--------------|------------------|-----------|-------|
| Ins. resist meter | GOSSEN       | Metriso 5000 | 0-4GΩ            | DC        | 1.5   |

table 8: Commonly used measuring devices

#### 7.4.4.Recorded values for the measurement

The following measured values should be noted:

- Connection
- Voltage in kV DC
- **>** Resistance in MΩ or GΩ

#### 7.5. Test criteria / Maximum values

In the standard for dry-type-transformers this test is not required, listed or provided with minimum values.

The minimum insulation resistance can be determined by a rule of thumb. This was valid until 1985 (per volt a 1kOhm).

When tested at the factory, we expect as a minimum value (Un [V] / 1000 + 1)  $\text{M}\Omega.$ 

e.g. HV with 15 kV and LV with 690 V HV = 15 kV corresponds 16 M $\Omega$ LV = 690 V corresponds 1.69 M $\Omega$ Bolts = 0 V corresponds 1 M $\Omega$ 



## 8. Sweep Frequency Response Analysis (SFRA)

#### 8.1. Standard

IEC 60076-16:2011 Appendix A.4

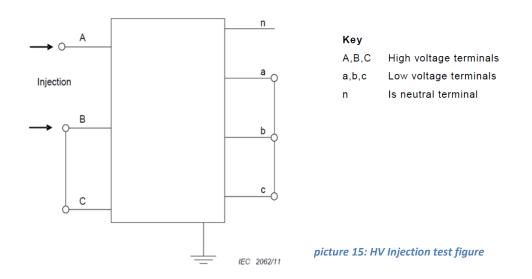
#### 8.2. Aim

The purpose of the measurement is to be a non-intrusive tool for verifying the geometric integrity of the transformer.

This graph can be compared with the original graph after x years or between the factory and installation site.

A difference between the values can occur e.g.: due to changing of the coil position, humidity or a turn-to-turn short on the transformer.

This measurement has more relevance when measuring oil-type transformers, as a dry type transformer can be physically measured when referencing possible shifting of coils due to transport issues and when assessing a possible transformer failure such as a winding failure or other damage to the windings themselves, the failure is generally either possible to diagnose visually or by basic testing procedures.




#### 8.3. Measurement

When performing this measurement, it is crucial that the variables are controlled as much as possible as any deviation from the original measurement will create a deviation on the new performed results. Variables include, but are not limited to, temperature, humidity, air pressure, the location of the test contacts and the tightness of the testing contacts. Especially at higher frequencies, the type of grounding is significant for the results.

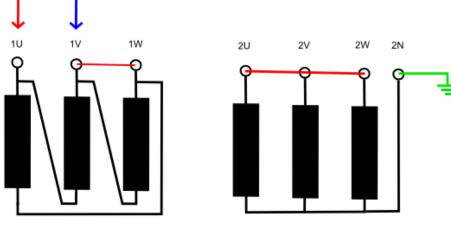
#### 8.3.1. Testing voltage and frequency

The testing output voltage is 2.83 Volts and uses a varying frequency, starting at 10 Hz and measures until 20 MHz (possible).



#### 8.3.2.Excerpt from the standard IEC 60076-16

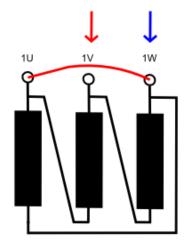
With the 3 LV phases short circuited, 3 different ways of HV injection should be considered:

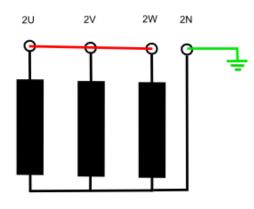

- HV phases B and C connected together and LV neutral connected to the ground of transformer. This case shall be used when the LV neutral is earthed during operation and gives the value of phase A.
- HV phases B and C connected together and connected to ground and LV neutral connected to the ground of transformer. This case is valid to see the difference in case of high voltage system ground fault and gives the value of phase A.
- HV phases B and C connected together and LV neutral not connected. This case shall be used when the LV neutral is not earthed during operation, Figure A.4 shows this kind of measurement configuration and gives the value of phase A.

For measurement of the other phases, rotation of the same sequences should be applied.

The following connection diagrams show the above explained case  ${\bf 1}$ 




#### 8.3.3. Measurement between phase 1 and phase 2




#### picture 16: Measurement between phase 1 and phase 2

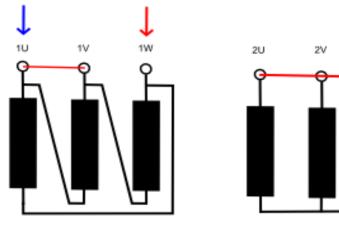
| Red & Yellow cable: | 1U                    |                         |                  |  |  |
|---------------------|-----------------------|-------------------------|------------------|--|--|
| Blue cable:         | 1V                    | (1V and 1W are shorted) |                  |  |  |
| LV:                 |                       | 2U, 2V, 2W are shorted  | (2N is grounded) |  |  |
| Кеу                 |                       |                         |                  |  |  |
| 1U, 1V, 1W          | High volta            | age terminals           |                  |  |  |
| 2U, 2V, 2W          | Low voltage terminals |                         |                  |  |  |
| 2N                  | is neutral terminal   |                         |                  |  |  |

#### 8.3.4. Measurement between phase 2 and phase 3





picture 17: Measurement between phase 2 and phase 3


| Red & Yellow cable: | 1V         |                         |                  |
|---------------------|------------|-------------------------|------------------|
| Blue cable:         | 1W         | (1W and 1U are shorted) |                  |
| LV:                 |            | 2U, 2V, 2W are shorted  | (2N is grounded) |
| Кеу                 |            |                         |                  |
| 1U, 1V, 1W          | High volt  | age terminals           |                  |
| 2U, 2V, 2W          | Low volte  | age terminals           |                  |
| 2N                  | is neutral | terminal                |                  |



2W

2N

#### 8.3.5. Measurement between phase 3 and phase 1



#### picture 18: Measurement between phase 3 and phase 1

| Red & Yellow cable: | 1W         |                         |                  |
|---------------------|------------|-------------------------|------------------|
| Blue cable:         | 1U         | (1U and 1V are shorted) |                  |
| LV:                 |            | 2U, 2V, 2W are shorted  | (2N is grounded) |
| Кеу                 |            |                         |                  |
| 1U, 1V, 1W          | High volt  | age terminals           |                  |
| 2U, 2V, 2W          | Low volta  | age terminals           |                  |
| 2N                  | is neutral | l terminal              |                  |

#### 8.3.6.Commonly used measuring devices for measurement

| measuring devices | manufacturer | type       | range / accuracy | frequency | class |
|-------------------|--------------|------------|------------------|-----------|-------|
| SFRA Analyzer     | Omicron      | FRAnalyzer | 20Hz-20MHz       | AC        |       |

Table 9: Commonly used measuring devices

#### 8.3.7.Recorded values for the measurement

A spectrum from 20Hz-20MHz will be given in the test sheet for Magnitude and Phaseangle. Additional if the customer wishes, we can supply a "tfra"-file from Omicron with all raw measument data.

#### 8.4. Test criteria / Maximum values

none

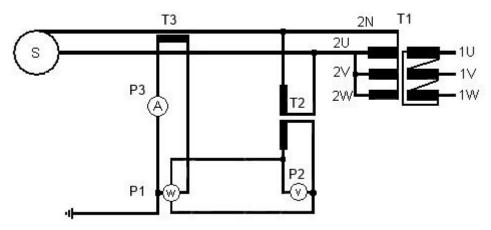


## 9. Measurement of zero sequence impedance

#### 9.1. Standard

IEC 60076-1:2011 clause 11.6

#### 9.2. Aim


The purpose of the measurement is to give the impedance based upon the transformer for informative purposes when designing earth-fault protection and earth-fault current calculations.

#### 9.3. Measurement

The measurement is possible on star or zigzag connected windings. The measurement is carried out by supplying a current at rated frequency between the three parallel connected phase systems and the neutral terminal.

#### 9.3.1.Testing current and frequency

The appropriate current shall either be 30 % of the nominal current or the maximal available current available through testing facilities. According to the IEC, the current on the neutral and the duration of application should be limited to avoid excessive temperatures of metallic constructive parts. The test shall always be carried out at nominal frequency in nominal tapping position.



#### 9.3.2.Test setup

picture 19: test setup for zero sequence impedance



### 9.3.3.Commonly used measuring devices for measurement

| measuring devices           | manufacturer | type    | range / accuracy                                      | frequency   | class     |
|-----------------------------|--------------|---------|-------------------------------------------------------|-------------|-----------|
| Precision Power<br>Analyzer | ZIMMER       | LMG 500 | U rms 1000 V / I rms 32 A<br>U pk 3200 V / I pk 120 A | DC - 10 MHz | 0.01-0.03 |
| LV-current-transf.          | H&B          | Ti 48   | 2.5-500 A/5 A                                         | 50/60 Hz    | 0.1       |
| HV-voltage-transf.          | epro         | NVRD 40 | 2-40 kV/100 V                                         | 50/60 Hz    | 0.02      |
| HV-current-transf.          | epro         | NCO 60  | 1-600 A/5 A                                           | 50/60 Hz    | 0.01      |

Table 10: Commonly used measuring devices

#### 9.3.4.Recorded values for the measurement

The voltage, current and losses per phase are measured and documented.

9.4. Test criteria / Maximum values

none



## 10. Measurement of harmonics of the no-load current in % of fundamental

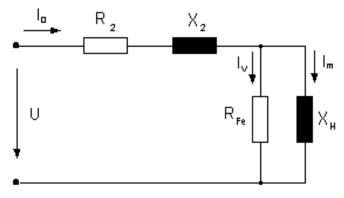
#### components

#### 10.1. Standard

IEC 60076-1:2000 clause 10.6

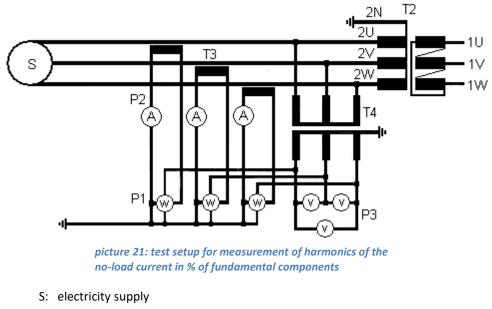
#### 10.2. Aim

The purpose of the measurement is to give the harmonics of the no-load current in the three phases.


#### 10.3. Measurement

The measurement of the excitation is made using the same test setup as for the no-load measurement (chapter for routine tests, clause 6). It is carried out with the rated voltage  $U_R$  and the rated frequency  $f_R$ .

#### 10.3.1. Tapping position for measurement


It is only necessary to reach the rated turn voltage. Therefore, the tapping position does not matter. Usually it is the principal tapping position.

#### 10.3.1. Equivalent circuit diagram for a transformer in no-load



picture 20 transformer in no-load





- T2: transformer to be tested
- T3: current transformer
- T4: voltage transformer

P1: wattmeter P2: amperemeter (I<sub>RMS</sub>) P3: voltmeter (U<sub>RMS</sub>)

#### 10.3.3. Commonly used measuring devices for measurement

| measuring devices manufacturer |        | type    | type range / accuracy     |             | class     |
|--------------------------------|--------|---------|---------------------------|-------------|-----------|
|                                |        |         |                           |             |           |
| Precision Power                | ZIMMER | LMG 500 | U rms 1000 V / I rms 32 A | DC - 10 MHz | 0.01-0.03 |
| Analyzer                       |        |         | U pk 3200 V / I pk 120 A  |             |           |
| LV-current-transf. H&B         |        | Ti 48   | 2.5-500 A/5 A             | 50/60 Hz    | 0.1       |
|                                |        |         |                           |             |           |
| HV-voltage-transf.             | epro   | NVRD 40 | 2-40 kV/100 V             | 50/60 Hz    | 0.02      |
| HV-current-transf.             | epro   | NCO 60  | 1-600 A/5 A               | 50/60 Hz    | 0.01      |

Table 11: Commonly used measuring devices

#### 10.3.4. Recorded values for the measurement

The harmonics of the no-load current in the three phases are measured and the magnitude of the harmonics is expressed as a percentage of the fundamental component.

#### 10.4. Test criteria / Maximum values

none



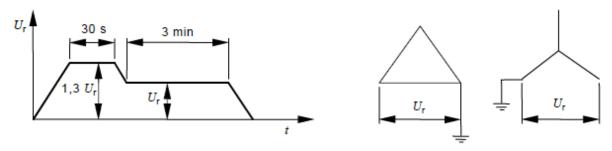
## 11.Measurement of partial discharge with earth

#### 11.1. Standard

IEC 60076-11:2018 clause 14.4.1

#### 11.2. Aim

Partial discharge measurement of single-phase line-to-earth fault condition.


This special test is for transformers connected to systems which are isolated or earthed through a high value impedance and which can continue to be operated under a single phase line-to-earth fault condition.

#### 11.3. Measurement

For detailed information on the partical discarge measurement and the measurement environment, please see (chapter for routine tests, clause 10).

#### 11.3.1. Differences to the routine partical discarge measurement

A phase-to-phase voltage of 1.3 Ur shall be induced for 30 s, with one line terminal earthed, followed without interruption by a phase-to-phase voltage of Ur 1.0 for 3 min during which the partial discharge shall be measured. This test shall be repeated with another line terminal earthed.



picture 22: measurement of partial discharge with earth

All other criteria refer to routine partical discarge measurement.

#### 11.3.2. Commonly used measuring devices for measurement

| measuring devices        | manufacturer | type                           | range / accuracy | frequency  | class     |
|--------------------------|--------------|--------------------------------|------------------|------------|-----------|
| PD-measurement<br>system | Omicron      | MCU502<br>4xMPD600<br>3xMPP600 | 500 fC - 3nC     | 0 - 32 MHz | 0.01-0.03 |

Table 12: Commonly used measuring devices

#### 11.3.3. Recorded values for the measurement

The background level and the maximum PD values within the 180 sec. for all phases in [pC], are then recorded in the test protocol.

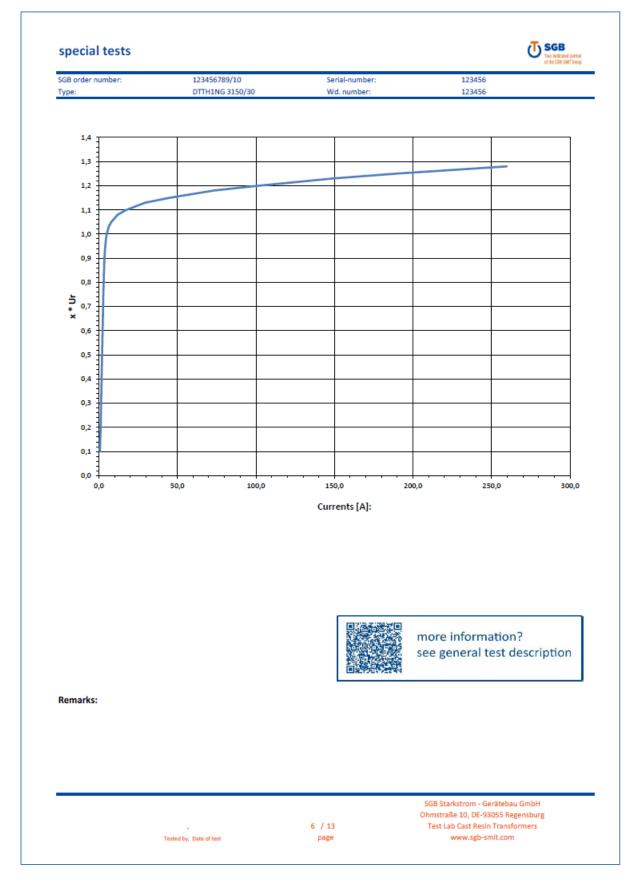
#### 11.4. Test criteria / Maximum values

The partial discharge level is allowed a maximum of 10pC with correction factor.



## 12.Appendix

#### special tests (based on Standard: IEC 60076-11:2018) SGB order number: 123456789/10 Serial-number 123456 DTTH1NG 3150/30 Wd. number: 123456 Type: Measurement of A-weighted sound level by sound pressure method at no load Test results in dB[A] at 1 m AN AF Fan F1 57.2 61,8 60,3 connection LV 690 V F2 54,9 64,9 64,6 Frequency 50 Hz F3 55,1 66,0 65,7 Measurement carried out in Protection IP00 F4 56,2 64,9 64,3 F5 55,8 63,4 62,8 F6 52,4 62,0 61,6 F7 51,8 61,3 61,0 F8 56,2 63,7 62,9 F9 56.8 64,7 64,0 F10 53,3 65,7 65,6 F11 54,9 64,9 64,5 AN AF 61,9 64,1 F12 52.0 62,3 55.1 Lp 1m : Average 55,1 64,1 63,6 Lw: 71,0 79,9 70,0 60.0 50,0 40,0 30,0 20,0 10,0 0,0 8 -10,0 0 kHz 200 400 600 800 1000 1200 1400 1600 1800 2000 more information? F9 F10 see general test description F8 F11 LV F7 F12 12 F6 |2|F1 : нν F5 F2 F4 F3 Example pictures and schematics refer to a standard transformer. Deviations from the actual product may be possible. Remarks: SGB Starkstrom - Gerätebau GmbH Ohmstraße 10, DE-93055 Regensburg 4 / 13 Test Lab Cast Resin Transformers page www.sgb-smit.com Tested by, Date of test

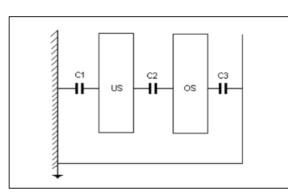

#### 12.1. Example test certificate Sound level measurement



### 12.2. Example test certificate measurement of excitation

| SGB order nu | imber:             |                           | 123456789/10                         |                  | Serial-numbe     |                     |                  | 123456                            |   |
|--------------|--------------------|---------------------------|--------------------------------------|------------------|------------------|---------------------|------------------|-----------------------------------|---|
| Гуре:        |                    |                           | DTTH1NG 3150/30                      |                  | Wd. number       | :                   |                  | 123456                            |   |
|              |                    | excitation                |                                      |                  |                  |                     |                  |                                   |   |
|              |                    |                           | Hz / Protection IP00<br>Voltage [V]: | Magnetic flux    |                  | 549 [T]<br>nts [A]: |                  | Losses [W]:                       |   |
| Rated vo     | ltage [V]:         | B [T]:                    | Average                              | U                | V                | W                   | Average          | Σ                                 |   |
| 10%          | 69,0               | 0,17                      | 69,8                                 | 0,754            | 0,541            | 0,767               | 0,688            | 55                                |   |
| 20%          | 138,0              | 0,33                      | 138,0                                | 1,234            | 0,876            | 1,267               | 1,126            | 196                               |   |
| 30%          | 207,0              | 0,50                      | 207,5                                | 1,626            | 1,149            | 1,684               | 1,487            | 415                               |   |
| 40%<br>50%   | 276,0<br>345,0     | 0,66                      | 275,1<br>344,4                       | 1,959<br>2,276   | 1,382            | 2,040 2,384         | 1,794<br>2,089   | 696<br>1055                       |   |
| 60%          | 414,0              | 0,99                      | 414,3                                | 2,278            | 1,838            | 2,384               | 2,386            | 1055                              |   |
| 70%          | 483,0              | 1,16                      | 484,0                                | 2,937            | 2,085            | 3,093               | 2,705            | 2022                              |   |
| 75%          | 517,5              | 1,24                      | 517,1                                | 3,122            | 2,215            | 3,281               | 2,873            | 2306                              |   |
| 80%          | 552,0              | 1,32                      | 551,5                                | 3,338            | 2,367            | 3,495               | 3,067            | 2629                              |   |
| 83%          | 572,7              | 1,37                      | 572,3                                | 3,489            | 2,474            | 3,640               | 3,201            | 2841                              |   |
| 85%          | 586,5              | 1,40                      | 587,3                                | 3,603            | 2,554            | 3,747               | 3,302            | 3001                              |   |
| 88%          | 607,2              | 1,45                      | 606,2<br>620,4                       | 3,785            | 2,679            | 3,914               | 3,459            | 3219<br>3397                      |   |
| 90%<br>93%   | 621,0<br>641,7     | 1,48                      | 641,3                                | 3,950            | 2,791 2,989      | 4,064               | 3,602 3,849      | 3678                              | _ |
| 95%          | 655,5              | 1,57                      | 655,0                                | 4,484            | 3,168            | 4,556               | 4,069            | 3886                              |   |
| 98%          | 676,2              | 1,62                      | 676,3                                | 5,040            | 3,574            | 5,078               | 4,564            | 4248                              |   |
| 100%         | 690,0              | 1,65                      | 689,7                                | 5,583            | 3,986            | 5,592               | 5,054            | 4514                              |   |
| 103%         | 710,7              | 1,70                      | 709,8                                | 6,906            | 5,041            | 6,938               | 6,295            | 4979                              |   |
| 105%         | 724,5              | 1,73                      | 725,4                                | 8,728            | 6,536            | 8,781               | 8,015            | 5401                              |   |
| 108%         | 745,2              | 1,78                      | 744,5<br>759,8                       | 12,977           | 9,991            | 13,023              | 11,997           | 6019<br>6582                      |   |
| 110%<br>113% | 759,0<br>779,7     | 1,82                      | 759,8                                | 18,982<br>31,711 | 14,930<br>25,680 | 18,928<br>31,511    | 17,613<br>29,634 | 7379                              |   |
| 115%         | 793,5              | 1,80                      | 794,4                                | 47,683           | 39,811           | 47,269              | 44,921           | 8137                              | _ |
| 118%         | 814,2              | 1,94                      | 813,7                                | 76,666           | 67,399           | 75,976              | 73,347           | 9204                              |   |
| 120%         | 828,0              | 1,98                      | 828,1                                | 105,514          | 95,116           | 104,185             | 101,605          | 10172                             |   |
| 123%         | 848,7              | 2,03                      | 848,1                                | 153,195          | 142,488          | 151,780             | 149,154          | 11852                             |   |
| 125%         | 862,5              | 2,06                      | 862,0                                | 193,760          | 183,342          | 192,116             | 189,739          | 13354                             |   |
| 128%         | 883,2              | 2,11                      | 882,2                                | 262,814          | 254,436          | 261,524             | 259,591          | 16098                             |   |
| E            | (<br>xample pictur | S<br>-I+<br>es and schema | P2<br>A<br>P1                        | T3               | viations from    |                     | 4<br>            | 1U<br>1∨<br>1W                    |   |
| E            | xampie pictur      | es ana scnemo             | tucs refer to a standara ti          | ransformer. De   | viations from    | tne actuai pri      |                  | possible.<br>trom - Gerätebau Gmi |   |








## 12.3. Example test certificate determination of the capacity of the windings against earth and between the windings as well as loss factors (tan $\delta$ )

| special tests                 |                 | U SGB          |        |                       |
|-------------------------------|-----------------|----------------|--------|-----------------------|
| according to Standard: IEC 60 | 076-1:2011)     |                |        | of the SEB-SMIT Encep |
| SGB order number:             | 123456789/10    | Serial-number: | 123456 |                       |
| Type:                         | DTTH1NG 3150/30 | Wd. number:    | 123456 |                       |

Determination of the capacity of the windings against earth and between the windings as well as loss factors (tan  $\delta$ )



| Temperature [°C]:                          | 22,8  |  |  |  |
|--------------------------------------------|-------|--|--|--|
| Humidity [%]:                              | 33,9  |  |  |  |
| Air-pressure [hPa]:                        | 970,2 |  |  |  |
| Frequency [Hz]:                            | 50,0  |  |  |  |
| Measurement carried out in Protection IP00 |       |  |  |  |

Example pictures and schematics refer to a standard transformer. Deviations from the actual product may be possible.

|    | at Testing voltage |                |             |            |          |  |  |  |  |  |
|----|--------------------|----------------|-------------|------------|----------|--|--|--|--|--|
|    | Voltage [kV]:      | Currents [mA]: | Losses [W]: | tg d. [%]: | Cx [pF]: |  |  |  |  |  |
| C3 | 10,0               | 3,520          |             | 0,018      | 1119,8   |  |  |  |  |  |
| C2 | 10,0               | 0,758          |             | 0,212      | 234,0    |  |  |  |  |  |
| C1 | 2,4                | 1,464          |             | 0,075      | 1935,3   |  |  |  |  |  |
|    |                    |                |             |            |          |  |  |  |  |  |
|    |                    |                |             |            |          |  |  |  |  |  |
|    |                    |                |             |            |          |  |  |  |  |  |



more information? see general test description

Remarks:

SGB Starkstrom - Gerätebau GmbH Ohmstraße 10, DE-93055 Regensburg , 10 / 13 Test Lab Cast Resin Transformers Tested by, Date of test page www.sgb-smit.com



| 12.4. | Example | test | certificate | Insulation | resistance |
|-------|---------|------|-------------|------------|------------|
|-------|---------|------|-------------|------------|------------|

| Routine testing<br>(according to Standard IEC 60 | 076-11:2018)                         |                                     |                                                    | SGB<br>Your dedicated partner<br>of the SSB-Staff Ecorp |
|--------------------------------------------------|--------------------------------------|-------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| SGB order number:                                | 123456789/10                         | Serial-number:                      | 123456                                             |                                                         |
| Type:                                            | DTTH1NG 3150/30                      | Wd. number:                         | 123456                                             |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
| Insulation resistance                            |                                      |                                     |                                                    |                                                         |
| bolts / earth    Testing voltag                  | e 0,5kV DC                           | > 2 GΩ                              | min:<br>≥1 MΩ                                      | Test passed                                             |
| HV / earth    Testing voltage                    | 2,5kV DC                             | 5 GΩ                                | ≥ 31,0 MΩ                                          | 4                                                       |
| LV / earth    Testing voltage 2                  | 2,5KV DC                             | 5 GΩ                                | ≥ 1,7 MΩ                                           | *                                                       |
|                                                  |                                      |                                     |                                                    |                                                         |
|                                                  |                                      | <u> </u>                            |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
| 10                                               | ╵└┎═╗║╺═╾                            | 20 10                               | 20                                                 |                                                         |
| 11                                               |                                      | 2V 1V                               | 2V                                                 |                                                         |
| 11                                               | ┈╶══┙║┝═╾╴                           | 2W 1W                               | 2W<br>2N                                           |                                                         |
| Evenel                                           |                                      | -                                   | —                                                  | ible                                                    |
|                                                  | e pictures una schematics rejer to a | standard transformer. Deviations fi | on the actual product may be poss                  | ibie.                                                   |
| Remarks                                          |                                      |                                     |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
|                                                  |                                      |                                     |                                                    |                                                         |
| Measurement carried o                            | out in Protection IP00               |                                     |                                                    |                                                         |
|                                                  |                                      |                                     | SGB Starkstrom - Gerätel                           | oau GmbH                                                |
|                                                  |                                      | 3 / 13                              | Ohmstraße 10, DE-93055<br>Test Lab Cast Resin Trar | Regensburg                                              |
|                                                  | ,                                    | 5 / 15                              | rest Lab Cast Kesin Tran                           | sionners                                                |



### 12.5. Example test certificate SFRA

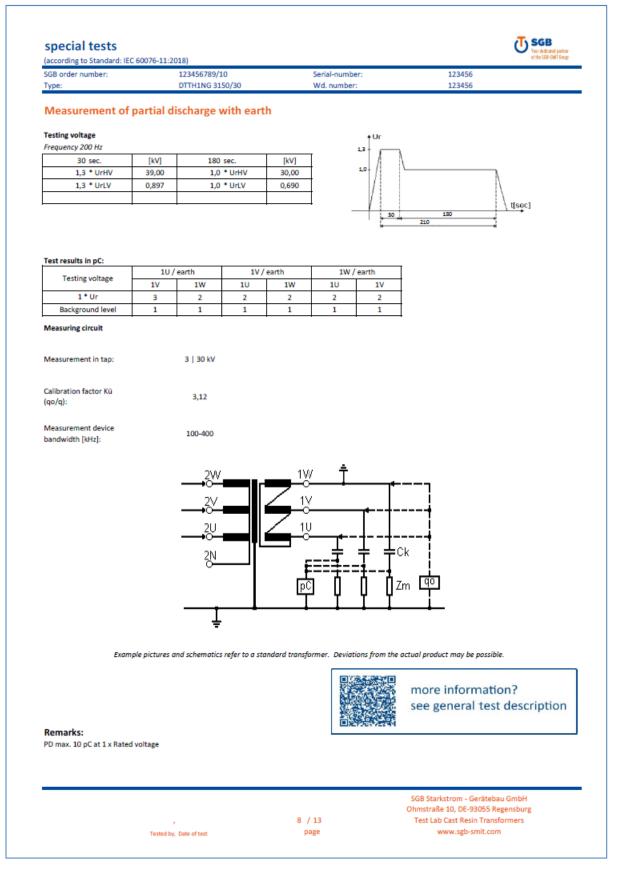
| con a la sub-                        | dard: IEC 60076-16:201    |                                 | for dal assessments           |                | 100455                                   | of the SBB-SMIT Broup |
|--------------------------------------|---------------------------|---------------------------------|-------------------------------|----------------|------------------------------------------|-----------------------|
| SGB order numbe<br>Type:             |                           | 123456789/10<br>DTTH1NG 3150/30 | Serial-number:<br>Wd. number: |                | 123456<br>123456                         |                       |
| Measurement car                      | ried out in Protection IF |                                 | ent in tap:3                  |                |                                          |                       |
| Measurement dev<br>Measuring circuit | ice bandwidth 20Hz - 2    | MHz   Points / Sweep: 1         | 000   Input Imedance 50Ω      | 2              |                                          |                       |
|                                      | red/yellow-cable          | blue-cable                      | short-circuit                 | earth          | highest resonance [Hz                    | I                     |
| connection                           | 1U<br>1V                  | 1V-1W<br>1U-1W                  | 2U-2V-2W<br>2U-2V-2W          | 2N<br>2N       | 227.585<br>230.094                       |                       |
|                                      | 1W                        | 10-11                           | 2U-2V-2W                      | 2N             | 230.094                                  |                       |
| 0,0                                  |                           |                                 |                               |                |                                          |                       |
| -10,0                                |                           |                                 |                               |                |                                          |                       |
|                                      |                           |                                 |                               |                |                                          |                       |
| -20,0                                |                           | $\sim$                          |                               |                |                                          | . ^ ~                 |
| -30,0<br>-8                          |                           |                                 |                               |                | AN M                                     | ~~                    |
| .0,0                                 |                           |                                 |                               |                |                                          |                       |
| aprij0,0<br>W aguite<br>W -50,0      |                           |                                 |                               |                | V V                                      |                       |
| -50,0                                | -10                       |                                 |                               | $\neg N$       |                                          |                       |
| -60,0                                | -1V                       |                                 |                               | V <sup>*</sup> |                                          |                       |
|                                      | -1W                       |                                 |                               | •              |                                          |                       |
| -70,0<br>20 Hz                       | 200                       | 20                              | 00 20                         | 000            | 200000                                   | 200000                |
| 150,0                                |                           |                                 |                               |                |                                          |                       |
| 100,0                                |                           |                                 |                               | Ι.             |                                          |                       |
| 50,0                                 |                           |                                 |                               |                | $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | $\sim n$              |
|                                      |                           |                                 |                               |                | VI ~                                     | · Y ·                 |
|                                      |                           |                                 |                               |                | V                                        |                       |
| hase                                 |                           |                                 |                               |                |                                          |                       |
| ego,0                                |                           |                                 |                               |                |                                          |                       |
| -100,0                               |                           |                                 |                               | 11             |                                          |                       |
| -100,0                               |                           |                                 |                               | u l            |                                          |                       |
| -100,0                               | 200                       | 20                              | 00 20                         | <b>N</b>       | 200000                                   | 200000                |
| -100,0                               | 200                       | 20                              | 00 20                         | <b>V</b>       | 200000                                   | 200000                |
| -100,0                               | 200                       | 20                              | 00 20                         | 0000           | 200000                                   | 200000                |
| -100,0                               | 200                       | 20                              | 00 20                         |                |                                          | 200000                |
| -100,0                               | 200                       | 20                              | 00 20                         | mi<br>Maria    | ore information?                         |                       |
| -100,0<br>-150,0<br>20 Hz            | 200                       | 20                              | 00 20                         | mi<br>Maria    |                                          |                       |
| -100,0<br>-150,0<br>20 Hz            | 200                       | 20                              | 00 20                         | mi<br>Maria    | ore information?                         |                       |
| -100,0<br>-150,0<br>20 Hz            | 200                       | 20                              | 00 20                         | sce            | ore information?                         | cription              |

Note: Omicron FRAnalyzer software (freeware) is required to open the raw data file.



## **12.6.** Example test certificate zero sequence impedance

| special tests                                             | C007C 1-2011)                                       |                               | U SGB<br>Var delcade parter<br>the SBE-SMI freq                      |
|-----------------------------------------------------------|-----------------------------------------------------|-------------------------------|----------------------------------------------------------------------|
| (according to Standard: IEC<br>SGB order number:<br>Type: | 123456789/10<br>DTTH1NG 3150/30                     | Serial-number:<br>Wd. number: | 123456<br>123456                                                     |
| Measurement of                                            | zero sequence impedance                             | •                             |                                                                      |
| Measurement carried out i                                 | n Protection IP00                                   |                               |                                                                      |
|                                                           |                                                     |                               |                                                                      |
|                                                           |                                                     |                               |                                                                      |
|                                                           |                                                     |                               |                                                                      |
| Measurement of zero sequ                                  | ence impedance LV                                   |                               |                                                                      |
| Voltage [V]:<br>Currents [A]:                             | 1,982<br>441,9                                      |                               |                                                                      |
| Losses [W]:                                               | 58,30                                               |                               |                                                                      |
| Zo [Ω/ Phase]:                                            | 0,01345546                                          |                               |                                                                      |
|                                                           | P3<br>P1<br>w<br>ample pictures and schematics refe | P2<br>V                       |                                                                      |
| Remarks:                                                  |                                                     | PLE WORK BURGED >             | more information?<br>see general test description                    |
| neilldiks;                                                |                                                     |                               |                                                                      |
|                                                           |                                                     |                               | SGB Starkstrom - Gerätebau GmbH<br>Ohmstraße 10, DE-93055 Regensburg |



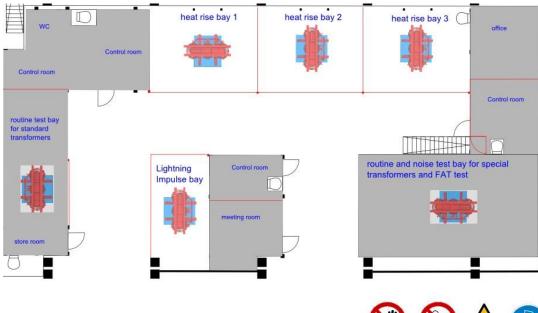

## **12.7.** Example test certificate Measurement of harmonics of the no-load current in % of fundamental components

| SGB order numb                         | andard: IEC 60076-1:20 |                                 |                              |                                                             | Your dedicated partner<br>of the SER-SMIT Encep |
|----------------------------------------|------------------------|---------------------------------|------------------------------|-------------------------------------------------------------|-------------------------------------------------|
| Type:                                  | er:                    | 123456789/10<br>DTTH1NG 3150/30 | Serial-numbe<br>Wd. number:  |                                                             | 123456<br>123456                                |
| Measurem                               | 009,16 V & Frequency 5 | cs of the no-load (             | current in % of fun          |                                                             | onents                                          |
| 3H                                     | Phase U [%]:<br>2,9    | Phase V [%]:<br>8,0             | Phase W [%]:<br>7,9          | Average<br>6,3                                              | _                                               |
| 5H                                     | 4,3                    | 2,7                             | 3,6                          | 3,5                                                         | _                                               |
| 7H                                     | 1,0                    | 0,9                             | 1,1                          | 1,0                                                         | -                                               |
| 9H                                     | 0,1                    | 0,1                             | 0,2                          | 0,1                                                         | -                                               |
| 11H                                    | 0,1                    | 0,1                             | 0,1                          | 0,1                                                         | -                                               |
| 13H                                    | 0,1                    | 0,1                             | 0,1                          | 0,1                                                         | -                                               |
| 15H                                    | 0,0                    | 0,0                             | 0,0                          | 0,0                                                         |                                                 |
| 6,0<br>5,0<br>3,0<br>2,0<br>1,0<br>0,0 | 3н 5н                  | 7н 9н 11                        | н 13н 15н                    | Phase U [%]: Phase V [%]: Phase V [%]: Phase W [%]: Average |                                                 |
|                                        |                        |                                 | <u>, 2N T</u> 2              | 2                                                           |                                                 |
| Example pict<br>possible.              | S<br>                  | P1                              | er. Deviations from the actu |                                                             |                                                 |
|                                        |                        |                                 | 20<br>2V<br>2W<br>2W         | al product may be                                           | information?<br>eneral test description         |



#### 12.8. Example test certificate Measurement of partial discharge with earth






### **12.9. Example calibration list**

|                                                                                    |                                           | 6.1                              |                                                           | Kalibrierung von N<br>neasuring equipm                                           |                                                                                    |                        |                     |                                                                                     |                          |                      | O sea                    |                                        |
|------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------|---------------------|-------------------------------------------------------------------------------------|--------------------------|----------------------|--------------------------|----------------------------------------|
|                                                                                    |                                           | Cal                              | Te                                                        | K-Ma                                                                             | Melbereich                                                                         | su, uansio             |                     | Developed.                                                                          | Lette                    | Nikhote Kal.         |                          |                                        |
| Welgerite                                                                          | Measuring devices                         | Manufactur                       | nye<br>type                                               | servitau<br>Servitau                                                             | Meilliereich<br>Range                                                              | frequency              | dese                | iscation<br>Routine                                                                 | Calibration              | Nert cal.            | STATUS                   | Kelbrierungent                         |
| Ko-Span,-Wandler<br>KS-Span,-Wandler                                               | W-voltage-transf.                         | -900<br>-900                     | NVRD 40                                                   | 2005055                                                                          | 2-40 kV/300 V                                                                      | 50/60 Hz               | 0.02<br>0.02        | Routine                                                                             | 28.12.2053               | Dec 2016             | in Ordnung               | 600                                    |
| HS-Span,-Wandler<br>HS-Strom-Wandler                                               | W-voltage-transf.<br>W-current-transf.    | epro<br>epro                     | NVRD 40<br>NCD 60                                         | 2/05/5347                                                                        | 2-40 LV/300 V<br>3-600 A/S A                                                       | 50/60 Hz<br>50/60 Hz   | d'at<br>d'at        | Routine<br>Routine                                                                  | 23.12.2053               | Dec 2016<br>Dec 2016 | In Ordnung<br>In Ordnung | 00                                     |
| HS-Strom-Wandler<br>HS-Strom-Wandler                                               | HV-current-transf.<br>HV-current-transf.  | egan<br>egan                     | NCO 60<br>NCO 60                                          | 200/5846<br>2/06/5850                                                            | 2-600 A/S A<br>2-600 A/S A                                                         | 50/90 Hz<br>50/90 Hz   | 0,05<br>0,05        | Routine                                                                             | 27.12.2058<br>27.12.2058 | Dec 2016<br>Dec 2016 | In Ordnung<br>In Ordnung | 010<br>010                             |
| KS-Strom-Wandler<br>KS-Strom-Wandler                                               | LV-current-transE<br>LV-current-transE    | 100                              | 1144<br>1144                                              | 61 K 163<br>61 K 164                                                             | 2,5-500 A/5 A<br>2,5-500 A/5 A                                                     | 50/90 Hz<br>50/90 Hz   | 9,1<br>9,1          | Routine<br>Routine                                                                  | 23.12.2053               | Dec 2016             | In Ordnung<br>In Ordnung | 010<br>010                             |
| NS-Strom-Wandler<br>HS-Span,-Wandler                                               | LV-current-transf.<br>HV-voltage-transf.  | H88                              | TI 48<br>NVCS 30                                          | 01 K 165<br>2/06/5345                                                            | 2,5-500 A/5 A<br>2-30 kV/100 V                                                     | 50/90 Hz<br>50/90 Hz   | 0,1<br>0,02         | Routine<br>Schallmessmum, Noise & PD                                                | 28.12.2053               | Dec 2016<br>Dec 2016 | In Ordnung<br>In Ordnung | 600<br>600                             |
| HS-Span,-Wandler<br>HS-Span,-Wandler                                               | W-voltage-transf.                         | +910<br>+930                     | NVOS 30<br>NVOS 30                                        | 2005348                                                                          | 2-30 kV/100 V                                                                      | 50/90 Hz<br>50/90 Hz   | 0.02<br>0.02        | Schallmessaurs, Noise & PD<br>Schallmessaurs, Noise & PD                            | 28.12.2053               | Dec 2016             | In Ordnung<br>In Ordnung | 0x0<br>0x0                             |
| HS-Strom-Wandler<br>HS-Strom-Wandler                                               | HV-current-transf.                        | +pm                              | NCO 80                                                    | 2/06/5332                                                                        | 5-50 A/5 A                                                                         | 50/50 Hz               | 9,05                | Schallmessmum, Noise & PD<br>Schallmessmum, Noise & PD                              | 27.12.2052               | Dec 2016             | In Ordnung               | 010                                    |
| KS-Strom-Wandler                                                                   | HV-current-transf.                        | -                                | NCO NO                                                    | 206/5341                                                                         | 5-50 A/5 A                                                                         | 50/60 Hz               | 0.05                | Schallmessaurs, Noise & PD<br>Willmeisur, Heat Rice 1+2                             | 27.12.2053               | Des 2016             | In Ordnung               | 000                                    |
| KS-Span-Wandler                                                                    | W-collage-transf.                         | MMD                              | NU26 15                                                   | 73/452003                                                                        | 3-35 kV/300 V                                                                      | 50/60 Hz               | 0,005               | Wärmelauf, Heat Rise 1+2                                                            | 09.10.2053               | 0612016              | In Ordnung               | 000                                    |
| KS-Span,-Wandler<br>KS-Strom-Wandler                                               | HV-current-tranef.                        | MAG                              | NG20 85                                                   | 64220264                                                                         | 3-85 KV/300 V<br>3-600 A/S A                                                       | 50/90 Hz<br>50/90 Hz   | 0,005<br>0,05       | Wärmelauf, Heat Rice 1+2<br>Wärmelauf, Heat Rice 1+2                                | 07.10.2053               | O612016              | in Ordnung<br>In Ordnung | 000                                    |
| HS-Strom-Wandler<br>HS-Strom-Wandler                                               | HV-current-tranef.                        | RTZ                              | NCON GO M                                                 | NEX 1                                                                            | 2-600 A/S A<br>2-600 A/S A                                                         | 50/50 Hz<br>50/50 Hz   | 0,05<br>0,05        | Wärmelauf, Heat Rice 1+2<br>Wärmelauf, Heat Rice 1+2                                | 07.10.2053               | O612016              | in Ordnung<br>In Ordnung | 060<br>060                             |
| KS-Strom-Wandler<br>KS-Strom-Wandler                                               | LV-current-transE.                        |                                  | 11 48±5<br>11 48                                          | 6004184<br>67112118                                                              | 2,5-250 A/5 A<br>2,5-250 A/5 A                                                     | 50/50 Hz<br>50/50 Hz   | 0,1<br>0,1          | Wärmelauf, Heat Rise 1+2<br>Wärmelauf, Heat Rise 1+2                                | 17.09.2053               | Sep 2016<br>Sep 2016 | In Ordnung<br>In Ordnung | 000<br>000                             |
| KS-Strom-Wandler<br>KS-Strom-Wandler                                               | LV-current-transE.<br>LV-current-transE.  | HAAR<br>RITZ                     | TT 48a5<br>KSW 73                                         | 6004180<br>50243058                                                              | 2,5-250 A/5 A<br>500A/5A                                                           | 50/50 Hz<br>50/50 Hz   | 0,1<br>0,2          | Wärmelauf, Heat Rice 1+2<br>Wärmelauf, Heat Rice 1+2                                | 17.09.2013               | Sep 2016             | In Ordnung<br>In Ordnung | ÖKD<br>Werkskallbrierung               |
| KS-Strom-Wandler<br>KS-Strom-Wandler                                               | LV-current-traneE.                        | R/12<br>R/12                     | KSW 73<br>KSW 73                                          | 50343039<br>50343040                                                             | 1004/5A<br>1004/5A                                                                 | 50/50 Hz<br>50/50 Hz   | с<br>С              | Wärmelauf, Heat Rice 1+2<br>Wärmelauf, Heat Rice 1+2                                | 29.01.2015               | lan 2018<br>Jan 2018 | In Ordnung<br>In Ordnung | Werkskallbrierung<br>Werkskallbrierung |
| KS-SpanWandler<br>KS-SpanWandler                                                   | W-voltage-transf.<br>W-voltage-transf.    | -970<br>-970                     | NVRD 40<br>NVRD 40                                        | 2/06/5555                                                                        | 2-40 kV/500 V<br>2-40 kV/500 V                                                     | 50/60 Hz<br>50/60 Hz   | ea<br>ea            | Wärmelauf, Heat Rice 3+4<br>Wärmelauf, Heat Rice 3+4                                | 28.12.2053               | Dec 2016<br>Dec 2016 | in Ordnung<br>In Ordnung | 010<br>010                             |
| HS-Span,-Wandler<br>UK-Smoo, Wandler                                               | W-college-transf.                         | epro                             | NVRD 40                                                   | 2/06/5354                                                                        | 2-40 kV/300 V                                                                      | 50/60 Hz               | 0.02                | Wärmelauf, Heat Rice 3+4<br>Wärmelauf, Heat Rice 3+4                                | 23.12.2053               | Dec 2016             | In Ordnung               | 600<br>600                             |
| KS-Strom-Wandler                                                                   | W-current-transf.                         | 4910                             | NCO 60                                                    | 200/5149                                                                         | 5-600 A/S A                                                                        | 50/50 Hz               | 0,05                | Wärmelauf, Heat Rice 3+6<br>Wärmelauf, Heat Rice 3+6<br>Wärmelauf, Heat Rice 3+6    | 27.12.2053               | Dec 2016             | In Ordnung               | 600                                    |
| NS-Ston-Wandler                                                                    | LV-current-transf.                        | 4910                             | NCD 20004                                                 | 20102152                                                                         | 10-2000 A                                                                          | 50/60 Hz               | 0,1                 | Wärmelauf, Heat Rice 3+4<br>Wärmelauf, Heat Rice 3+4                                | 01.10.2013               | 0412016              | In Ordnung               | Čito<br>Cito                           |
| NS-Store-Wandler                                                                   | LV-current-transf.                        | 4910                             | NCD 20004                                                 | 2010154                                                                          | 10 - 2000 A                                                                        | 50/60 Hz               | 0,1                 | Wärmelauf, Heat Rice 3+4<br>Wärmelauf, Heat Rice 3+4                                | 01.10.2053               | 0612016              | In Ordnung               | δiū                                    |
| NS-Strom-Wandler<br>NS-Strom-Wandler                                               | LV-current-transf.<br>LV-current-transf.  | RITZ                             | KSW 71<br>KSW 71                                          | 50243141<br>50243142                                                             | 1904/5A<br>1904/5A                                                                 | 50/50 Hz<br>50/50 Hz   | μ<br>μ              | Wärmelauf, Heat Rice 3+4<br>Wärmelauf, Heat Rice 3+4                                | 29.01.2015               | les 2018<br>Jan 2018 | In Ordnung               | Werkskallbrierung<br>Werkskallbrierung |
| 15-Store-Wandler<br>HS-Store-Wandler                                               | LV-current-transf.<br>LV-current-transf.  | RITZ<br>HAA                      | KSW 73<br>Ti 48a                                          | 50945145<br>6991565                                                              | 250A/SA<br>2-2500 A/S A                                                            | 50/50 Hz<br>50/50 Hz   | 02<br>01            | Wärmelauf, Heat Rice 3+6<br>Metsgeräteichnark                                       | 29.01.2055               | Jan 2018<br>Sep 2016 | In Ordnung<br>In Ordnung | Werkskallbrierung<br>ÖKD               |
| NS-Strom-Wandler<br>NS-Strom-Wandler                                               | LV-current-transf.<br>LV-current-transf.  | HAA                              | Ti dila<br>Ti dila                                        | 57(535)<br>57(535)                                                               | 2-3500 A/5 A<br>2-3500 A/5 A                                                       | 50,/90 Hz<br>50,/90 Hz | 6,1<br>0,1          | Messgeräteschrank<br>Messgeräteschrank                                              | 05.09.2053               | Sep 2016<br>Sep 2016 | In Ordnung<br>In Ordnung | ČKD<br>ČKD                             |
| HS-Strom-Wandler<br>HS-Strom-Wandler                                               | LV-current-transf.<br>LV-current-transf   | GOSSEN<br>GOSSEN                 | 56W2<br>55W2                                              | PT 35<br>PT 219                                                                  | 5-800 A/S A                                                                        | 50 Hz                  | 63<br>63            | Messgeräteschrank<br>Messgeräteschrank                                              | 16.09.2053               | Sep 2016             | In Onlinung              | DED                                    |
| KS-Strom-Wandler<br>Schallowelike Bostor                                           | LV-current-transf.<br>Amostical Collector | GOSSEN                           | 55W2                                                      | DT 280<br>2223072                                                                | 5-800A/SA                                                                          | 50 Hz                  | Q2                  | Messeelteschark<br>Schallmessaum, Noise & PD                                        | 16.09.2053               | Sep 2016             | In Ordnung               | DED                                    |
| Schwingungskafferstor                                                              | Calibrator                                | MAX                              | 4294                                                      | 2401778<br>PT L194                                                               | Stree-2/Streens/10ure                                                              | 159,2 Hz               |                     | Anterestinghout<br>Anterestinghout<br>Routine                                       | 15.04.2056               | Apr 2017             | In Ordnung               | DED                                    |
| asiationameligerit                                                                 | ins. resist meter                         | GOSSEN                           | Metrico 5000 A                                            | LPISI                                                                            | 20 k Ohrs- 1 TOhm                                                                  | DC                     | ř.                  | Messgeräteschrank                                                                   | 06.03.2056               | Mrs 2017             | In Ordnung               | 040                                    |
| Kochepennungsprüfer                                                                | High Voltage Tester                       | ETL Profesholk                   | LH28C                                                     | 2.00222.413                                                                      | 5 8V/500 mA                                                                        | 50-60 Hz               | 45<br>25            | Wagen für Vorprüfungen<br>Routine                                                   | 06.01.2056               | an 2017              | in Ordnung               | 00                                     |
| Multimeter<br>Multimeter                                                           | Multineter<br>Multineter                  | FLUKE<br>FLUKE                   | Ruke-87-V<br>Ruke-87-V                                    | 20192413                                                                         | 1000V/10A<br>1000V/10A                                                             | 50-60 Hz<br>50-60 Hz   | 0,1-1,0<br>0,1-1,0  | Routine<br>Wärmelauf, Heat Rice, allgemein                                          | 07.01.2056<br>09.02.2056 | Feb 2017             | In Ordnung<br>In Ordnung | DKD<br>DKD                             |
| Multimeter<br>Multimeter                                                           | Multimeter<br>Multimeter                  | FLUKE                            | Fluke-87-V<br>Metrohit185                                 | 20070205<br>M43911020                                                            | 1000V/10A<br>1000V/10 A                                                            | 50-60 Hz<br>50-60 Hz   | 0,1-1,0<br>0,05-0,5 | Wagen für Vorprüfungen<br>Endkontrolle                                              | 07.11.2055<br>20.03.2054 | Nov 2016<br>Mrs 2017 | In Ordnung<br>In Ordnung | DHD<br>DHD                             |
| Druck/Termo/Barometer                                                              | Hygro-/Thermo-<br>/Barometer              | Greidinger<br>electronic         | GFTB 200                                                  | 34922250                                                                         | -50-100°C<br>0% - 100% Rel. Luftfeachte<br>10.0 1100.03Pa                          |                        |                     | Stosspannungsplatz                                                                  | 25.01.2056               | Jan 2017             | In Ordnung               | Werkskellbrierung                      |
|                                                                                    |                                           | Greidinger                       |                                                           |                                                                                  |                                                                                    |                        |                     |                                                                                     |                          |                      |                          |                                        |
| Feachternesagerät                                                                  | Hygro-/Thermometer                        | electronic                       | GFTH:SS                                                   | 000395-01                                                                        | 6-70 °C<br>20-99% c.F.                                                             |                        |                     | Routine                                                                             | 07.01.2056               |                      | In Ordnung               | DKD                                    |
| Digitalthermometer                                                                 | Digitalthermometer                        | electronic                       | GTH175                                                    | 07-0-123                                                                         | -199,9 - 199,9*C                                                                   | -                      | 9,1                 | Wagen für Vorprüfungen                                                              | 15.02.2056               |                      | In Onlinung              | DKD                                    |
| Obersetzungenengerät                                                               | Transformer Turns Katto<br>Metar          | KAIPELY/Tethes                   | TTR 2796                                                  | 176590                                                                           | 0,8-20000<br>10,00%-20,15%                                                         | 50/60 Hz               | Q.05                | Wärmelauf, Heat Rise 3+4                                                            | 17.03.2056               |                      | In Ordnung               | KEMA                                   |
| Überectungenengerät                                                                | Transformer Turns Ratio<br>Metar          | HAIFELY/Tettes                   | TTR 2796                                                  | 177498                                                                           | 6,8 - 20000<br>20,68% - 2 0,15%                                                    | 50/60 Hz               | 9,05                | Wärmelauf, Heat Rise 1+2                                                            | 11.052096                | Mal 2017             | In Ordnung               | KEMA                                   |
| Wicklungsensityeetor                                                               | Winding Analyser                          | HAIPILY/Tetlex                   | WA 2290                                                   | 179742                                                                           | slehe Zertifikat                                                                   | 50/60 Hz               | dehe Zertifik       | Routine                                                                             | 24.09.2055               | Sep 2016             | In Ordnung               | KEMA                                   |
| Wicklungsenslysetor                                                                | Winding Analyser                          | HAIFELY/Tetlex                   | WA 2290                                                   | 182721                                                                           | slehe Zertifikat                                                                   | 50/60 Hz               | dehe Zertifik       | Wagen für Vorprüfungen                                                              | 14.01.2056               | Jan 2017             | In Ordnung               | Werkskallbrierung                      |
| Wicklungsohmmeter                                                                  | Micro Ohmmeter                            | IBERD<br>Power AB - DV           | RMONT                                                     | 180418                                                                           |                                                                                    | DC                     | ω.                  | Wärmelauf, Heat Rise 1+2                                                            | 29.03.2056               | Mrs 2017             | In Onlinung              | DHD                                    |
| Withmenthemeter                                                                    | Mico Ohmmeter                             | Power<br>IBEKD<br>Power AB - DV  | RMOKET                                                    | 1000408                                                                          |                                                                                    | DC                     | <u>م</u>            | Wärmelauf, Heat Rice 1+2                                                            | 28.10.2055               |                      | In Ordnung               | Werkskallbrierung                      |
| Wicklungschrameter                                                                 | Mico Chunneter                            | Power<br>IBEKD<br>Power AB - DV  | RMOKT                                                     | 1000-618                                                                         |                                                                                    | DC                     | а<br>11             | Wärmelauf, Heat Rise 1+2                                                            | 04.03.2056               |                      | In Ordnung               | DND                                    |
| Webburgerburgeter                                                                  | Mico Chunneter                            | Power<br>IBERD<br>Power AB - DV  | EMOSOT                                                    | 2938778                                                                          | 6,1 µ.Ohm - 2000 Ohm                                                               | ~                      |                     | Wärmelauf, Heat Rise 3+4                                                            | 12.01.2056               | June 2017            | in Ordnung               | DHD                                    |
| Weblenevhermeter                                                                   | Micro Chrometer                           | Power<br>IBERD<br>Power All - DV | EMOSOT                                                    | 2918748                                                                          | 6,1 µOhm - 2000 Ohm                                                                | ~                      |                     | Wärmelauf, Heat Rice 3+4                                                            | 01.02.2056               |                      | In Ordnung               | DHD                                    |
|                                                                                    | Micro Churneter                           | Power<br>IBERD<br>Power All - DV | RMONT                                                     |                                                                                  | 6,1 µOhm - 2000 Ohm                                                                | ~                      | ~<br>               | Wärmelauf, Heat Rice 3+4                                                            | 12.01.2016               | ine 2017             | In Ordnung               |                                        |
|                                                                                    |                                           | Power                            |                                                           | 2925758                                                                          |                                                                                    |                        |                     | and the pro-                                                                        |                          | 11.00                |                          | -                                      |
| Wicklungsohremeter                                                                 | Micro Ohmmeter                            | Power AB - DV                    | RMOSOT                                                    | 1251058                                                                          | 6,1 µ.Ohm - 2000 Ohm                                                               | DC                     | ua 👘                | Wagen für Vorprüfungen                                                              | 28.05.2055               | Mar 2016             | In Ordnung               | DKD                                    |
| Wicklungsohmmeter                                                                  | Micro Ohmmeter                            | TINGLEY                          | 585                                                       | 275201                                                                           | 1,1,00m-180 0hm                                                                    | DC                     | 0.1                 | Tectarbeitsplats fahrbar                                                            | 22.05.2055               | Mar 2016             | In Ordnung               | DED                                    |
| Link sension of a solid                                                            | universal measuring                       | Onlare                           | CPC 100                                                   | BDINY<br>NEXLAR                                                                  | dehe Zertifikat                                                                    | uc<br>dehe Zettilkat   | dete                | Mesgediteschrank                                                                    | 25.06.2015               | Aug 2016             | In Ordnung               | Werkskallbrierung                      |
| T. A. Bostor                                                                       | Instrument<br>Rh.Collhonne                | Onteres                          | CP 581                                                    | 19201220                                                                         | 1-100.00                                                                           | and the                | lettilikat -        | Schallmessmum, Noise & PD                                                           | 11 07 1000               | and the              | h Onlean                 | Water                                  |
| Ti-Kalbrator<br>Ti-Kalbrator                                                       | PD-Calibrator                             | MPS                              | TPK                                                       | 200028                                                                           | 5-500 µC                                                                           | 500 Hz                 | -                   | Schallmestmum, Noise & PD<br>Schallmestmum, Noise & PD<br>Schallmestmum, Noise & PD | 07.09.2055               | Sep 2016             | In Ordnung               | Werkskellbrierung                      |
| Scheitelepareurgeneuger itt.<br>Maarkanden utwo                                    | Peak voltage meter                        | MR                               | SMG                                                       | 211117                                                                           | 200 kW                                                                             | 50/60 Hz               | 2,0                 | Wärmelauf, Heat Rice 3+4                                                            | 26.10.2055               | 0612016              | In Ordnung               | Vor Ort Kallbrierung                   |
| Scheitelepannungemessgerlit<br>Masslandensatze                                     | Peak voltage meter                        | MPS                              | SMG                                                       | 211122                                                                           | 200 kW                                                                             | 50/50 Hz               | 2,0                 | Routine                                                                             | 26.10.2055               | 0612016              | In Ordnung               | Vor Ort Kallbrierung                   |
| nextondenator                                                                      | Measuring capaditor                       | MW8                              | DA100-18-5F                                               | 911.810637                                                                       |                                                                                    | 90/901H2               |                     |                                                                                     |                          |                      |                          |                                        |
| on a her lassungssystem                                                            | Data Acquisition Unit                     | TOROGANIA                        | 2x DU100-12<br>DT300-11<br>DA100-13-15                    | 911.5372107911.537214<br>91MC19218<br>911.010536                                 |                                                                                    |                        | 4.18                | Wärmelauf, Heat Rice 1                                                              | 11012056                 | Jan 2017             | an Cridinung             | 660                                    |
| Datenerlassungssystem                                                              | Data Acquidtion Unit                      | YOROGAINIA                       | 2x DU100-12<br>DT300-11<br>DA100-13-15                    | 911,616535<br>91,539,413 / 91,1339,417<br>91,539,413<br>12,45,9554<br>12,45,9554 | 6-25PC                                                                             |                        | Q.SK                | Wärmelauf, Heat Rise 2                                                              | 11.01.2056               |                      | In Ordnung               | DHD                                    |
| Datenerfassingssystem                                                              | Data Acquisition Unit                     | YONDGAINIA                       | 2x DU100-12<br>DT300-11<br>DA100-13-1F<br>2x DU100-12     | 124400534<br>124410334712440880<br>124424349<br>91.005448                        | 6-250°C                                                                            |                        | Q.5K                | Wärmelauf, Heat Rise 3                                                              | 14.01.2005               |                      | In Onlinung              | BKD                                    |
| Datemerfassungssystem                                                              | Data Acquisition Unit                     | YOROGANIA                        | 2x DU100-12<br>DT200-11                                   | 91.592462<br>91.597215/91.597212<br>91.619217                                    | 6-250°C                                                                            |                        | 0,58                | Wärmelauf, Heat Rice 4                                                              | 07.01.2056               | lan 2017             | In Ordnung               | DKD                                    |
| Midschirrachvelber                                                                 | Temperature recorder                      | JUMO                             | Logoscreen st                                             | 10230002                                                                         |                                                                                    |                        |                     | Wärmelauf, Heat Rise, aligemein                                                     | 07.12.2055               | Dec 2016             | In Ondnung               | DKD                                    |
| Prildelone-Leistungs-<br>Messgerät                                                 | Digital-powermeter                        | ZIMMER                           | 1.463.600                                                 | 02010210                                                                         | Urms1000V/Irms32A<br>Upk 3200V/Ipk 520A                                            | DC-10MHz               | 0.05-0,08           | Wärmelauf, Heat Rise 4                                                              | 05.01.2056               |                      | In Onlinung              | DHD                                    |
| Prildelone-Leistungs-<br>Messgerät                                                 | Precision Power Analyzer                  | ZIMMER                           | 1.463.600                                                 | 12471505                                                                         | Uma 1000 V / Ima 22 A<br>Upk 2200 V / Ipk 120 A                                    | DC-10MHz               | 0.05-0,08           | Schallmessnum, Noise & PD                                                           | 06.08.2055               | Aug 2016             | In Onlinung              | Werkskallbrierung                      |
| Pritchione-Leistungs-<br>Neusseriit                                                | Precision Power Analyzer                  | ZIMMER                           | 1.005.600                                                 | 12081-005                                                                        | U me 1000 V / I me 12 A<br>U sk 2200 V / I sk 120 A                                | DC-10MHs               | 0,05-0,08           | Routine                                                                             | 19.05.2056               | _                    | In Onlinung              | Werkskalbrierung                       |
| Präcklone-Leistunge-<br>Neusgerät                                                  | Precision Power Analyzer                  |                                  | LM0.500                                                   | 12021005                                                                         | U me 1000 V / I me 32 A<br>U pk 3200 V / I pk 520 A                                | DC-10MHs               | 0,05-0,08           | Wärmelauf, Heat Rise 1                                                              | 18.052056                | Mel 2017             | In Onlinung              | Werkskallbrierung                      |
| Pritzielone-Leistungs-<br>Messgerät                                                | Precision Power Analyzer                  | ZIMMER                           | 1.00.500                                                  | 029230640                                                                        | Ume 1000 V / Ime 32 A<br>Upk 3200 V / Isk 520 A                                    | DC-10MHs               | 0.05-0.08           | Wärmelauf, Heat Rise 3                                                              | 07.01.2056               |                      | In Onlinung              | DED                                    |
| Prilitions-Leistungs-                                                              | Precision Power Analyzer                  | ZIMINER                          | 1.40.500                                                  | 025220308                                                                        | U mis 1000 V / 1 pk 120 A<br>U mis 1000 V / 1 mis 12 A<br>U pk 1200 V / 1 pk 120 A | DC-10MHz               | 0,05-0,08           | Messgeräteschrank                                                                   | 05.05.2055               | _                    | In Ordnung               | DKD                                    |
| Prildelone-Lefetunge-<br>Messawilit                                                | Precision Power Analyzer                  |                                  | 1.00 310                                                  | 00703497                                                                         | Uma 1000 V / I ma 30 A<br>Upk 2000 V / I pk 60 A                                   | DC-1 MHs               | 8,05                | Messgeräteschrank                                                                   | 05.09.2015               | _                    | In Ordnung               | DKD                                    |
|                                                                                    |                                           |                                  |                                                           |                                                                                  | Umma 1000 V / Imma 20 A                                                            |                        | 1,05                | Wärmelauf, Heat Rise 2                                                              |                          |                      |                          |                                        |
| Prikzielone-Leistunge-<br>Messawilt                                                | Precision Power Analyzer                  | ZIMMER                           | LMG 310                                                   | 80104401                                                                         | Unk 2000 V / Lab 40.4                                                              | DC-1 MHz               | 1,16                | Warmelaut, Heat Rise 2                                                              | 16.02.2006               | Pee 2017             | In Ordnung               | DKD                                    |
| Prächlone Leistunge-<br>Neusgerät<br>Stolkonnonenseusentem                         |                                           |                                  |                                                           |                                                                                  | Upk 2000 V/Ipk 60A<br>20-400 kV                                                    | DC-1 MHs               |                     |                                                                                     |                          |                      |                          |                                        |
| Prizisione-Leistunge-<br>Mesegurit<br>Stolkpannungermeseystem<br>Fesquercarabrator | imp. voltage test system                  |                                  | LANS 310<br>SANC 2000-400<br>MEAS 300-34-28<br>FRAMALYZER | <u>804781</u><br>908223                                                          | 50 - 400 KV<br>20 KJ                                                               | DC - 1 MHz<br>SH2-2MHz |                     | Warmeaut, Heat Hos 2<br>Stoscopennungsplatz<br>Menspeditechnunk                     | 17.10.2015               |                      | In Onlinung              | UKD<br>Vor Ort Kallbrierung<br>DKD     |

calibration list SGB cast reals Regeneturg 15.07.2016





🛞 🛞 <u>A</u> 🕓

picture 23: test lab layout

12.10. Test lab layout



picture 24: routine and heat rise bays

picture 25: PD and sound chamber



### 12.11. List of pictures, formulas, tables and sources

| LIST OF PICTURES:                                                                                         |    |
|-----------------------------------------------------------------------------------------------------------|----|
| PICTURE 1: SOUND LEVEL METER RESPONSE CHARACTERISTICS FOR THE A, B, AND C WEIGHTING                       | 9  |
| PICTURE 2: TRANSFORMER IN NO-LOAD                                                                         | 10 |
| PICTURE 3: TEST SETUP FOR MEASUREMENT OF SOUND LEVEL                                                      | 11 |
| PICTURE 4: MICROPHONES SURROUNDING THE TRANSFORMER                                                        | 11 |
| PICTURE 5: SOUND PRESSURE LEVEL SEPCTRUM                                                                  | 12 |
| PICTURE 6: TRANSFORMER IN NO-LOAD                                                                         | 15 |
| PICTURE 7: TEST SETUP FOR MEASUREMENT OF EXCITATION                                                       | 15 |
| PICTURE 8: EXCERPT FROM THE STANDARD                                                                      | 17 |
| PICTURE 9: TEST SETUP FOR CAPACITY MEASUREMENT AT TWO-WINDING TRANSFORMERS                                | 19 |
| PICTURE $10$ : TEST SETUP FOR CAPACITY MEASUREMENT AT THREE-WINDING TRANSFORMERS                          | 20 |
| PICTURE 11: TRANSFORMER ACTIVE-PART CROSS-SECTION                                                         | 21 |
| PICTURE 13: CLOSE UP TRANSFORMER ACTIVE-PART CROSS-SECTION                                                | 22 |
| PICTURE 12: EQUIVALENT CIRCUIT DIAGRAM OF THE MAIN INSULATION PARTS                                       | 23 |
| PICTURE 14: TEST SETUP FOR INSULATION RESISTANCE                                                          | 23 |
| PICTURE 15: HV INJECTION TEST FIGURE                                                                      | 26 |
| PICTURE 16: MEASUREMENT BETWEEN PHASE 1 AND PHASE 2                                                       | 27 |
| PICTURE 17: MEASUREMENT BETWEEN PHASE 2 AND PHASE 3                                                       | 27 |
| PICTURE 18: MEASUREMENT BETWEEN PHASE 3 AND PHASE 1                                                       | 28 |
| PICTURE 19: TEST SETUP FOR ZERO SEQUENCE IMPEDANCE                                                        | 29 |
| PICTURE 20 TRANSFORMER IN NO-LOAD                                                                         | 31 |
| PICTURE 21: TEST SETUP FOR MEASUREMENT OF HARMONICS OF THE NO-LOAD CURRENT IN % OF FUNDAMENTAL COMPONENTS | 32 |
| PICTURE 22: MEASUREMENT OF PARTIAL DISCHARGE WITH EARTH                                                   | 33 |
| PICTURE 23: TEST LAB LAYOUT                                                                               | 44 |
| PICTURE 24: ROUTINE AND HEAT RISE BAYS                                                                    | 44 |
| PICTURE 25: PD AND SOUND CHAMBER                                                                          | 44 |
| LIST OF FORMULAS:                                                                                         |    |
| FORMULA 1: CALCULATION OF LP                                                                              | 8  |
| FORMULA 2: CALCULATION OF LW                                                                              | 8  |
| FORMULA 3: CALCULATION OF THE AVERAGE A-WEIGHTED SOUND PRESSURE LEVEL $L_{P(A)}$                          | 13 |
| FORMULA 4: CORRECTION FOR DISTANCE                                                                        | 13 |
| FORMULA 5: CALCULATION OF THE SOUND POWER LEVEL LW(A)                                                     | 13 |
| LIST OF TABLES:                                                                                           |    |
| TABLE 1: COMMONLY USED MEASURING DEVICES                                                                  | 12 |
| TABLE 2: USUAL VOLTAGES FOR EXCITATION CURVE                                                              | 14 |
| TABLE 3: COMMONLY USED MEASURING DEVICES                                                                  | 16 |
| TABLE 4: CIRCUITS FOR TWO-WINDING TRANSFORMERS                                                            | 19 |
| TABLE 5: ADDITIONAL CIRCUITS FOR TWO-WINDING TRANSFORMERS                                                 | 19 |
| TABLE 6: CIRCUITS FOR THREE-WINDING TRANSFORMERS                                                          | 20 |
| TABLE 7: COMMONLY USED MEASURING DEVICES                                                                  | 20 |



list of sources:

- > D.J. Kraaij Die Prüfung von Leistungstransformatoren
- > Wikipedia
- > IEC